



# 1.0625G to 12.5G Limiting Post Amplifier with Digital Offset Correction

### **General Description**

The SY88063CL limiting post amplifier is designed for use in fiber-optic receivers for multi-rate applications from 1.0625Gbps to 12.5Gbps.

The SY88063CL contains a high-bandwidth, high-sensitivity input stage with user-programmable, wide-range SD assert/LOS de-assert threshold levels, which enables optimized system reach. Typically, 4dB of electrical hysteresis is provided to minimize LOS or SD chattering caused by noisy input signals. A logic level control pin is provided to enable user selection of an open-collector, TTL-compatible LOS or SD status indication signal with an external  $5k\Omega$  to  $10k\Omega$  pull-up resistor.

The SY88063CL provides fast SD assert and LOS deassert times over the entire differential input voltage range of 5mV<sub>PP</sub> to 1800mV<sub>PP</sub>.

The SY88063CL input stage also provides a user-selectable digital offset correction (DOC) function to automatically compensate for internal device offsets in the high-speed data path.

The SY88063CL provides integrated  $50\Omega$  input and output impedances to optimize the high-speed signal paths and reduce component count. A TTL-compatible JAM input is provided to enable a SQUELCH function by feeding back the LOS or SD signal. The JAM input disables only the post amplifier output.

The SY88063CL operates from a single +3.3V power supply, over temperatures ranging from -40°C to +85°C.

Datasheets and support documentation are available on Micrel's web site at: <a href="https://www.micrel.com">www.micrel.com</a>.

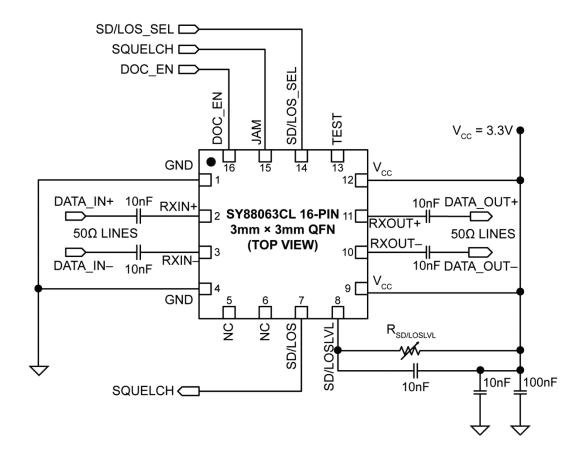
#### **Features**

- Multi-rate operation from 1.0625Gbps to 12.5Gbps
- Selectable digital offset correction for internal offset compensation in the high-speed data path
- Wide differential input range (5mV<sub>PP</sub> to 1800mV<sub>PP</sub>)
- Wide SD de-assert or LOS assert threshold range
  - $-3mV_{PP}$  to  $30mV_{PP}$
  - 4dB typical electrical hysteresis
- · Fast SD assert and LOS de-assert times
  - 75ns typical; 120ns maximum
- Selectable LOS or SD status signal indicator
- TTL-compatible JAM input with internal pull-up
- Low-noise CML data inputs with integrated  $50\Omega$  termination impedance to internal reference  $V_{\text{REF}}$
- Low-noise CML data outputs with integrated  $50\Omega$  termination impedance
  - 25ps typical rise/fall times
- Wide range power supply: 3.3V ±10%
- Industrial temperature range: -40°C to +85°C
- Available in a tiny 3mm × 3mm QFN package

### **Applications**

- Asymmetrical/Symmetrical 10GEPON
- Asymmetrical/Symmetrical XGPON
- 10Gigabit Ethernet
- 8Gbps and 10Gbps Fibre Channel
- SONET OC192/SDH STM64
- WDM/DWDM systems

#### **Markets**


- PON/FTTx
- Datacom/Enterprise
- Storage area networks
- · High-performance computing
- Telecom
- 8G+ Optical transceivers

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

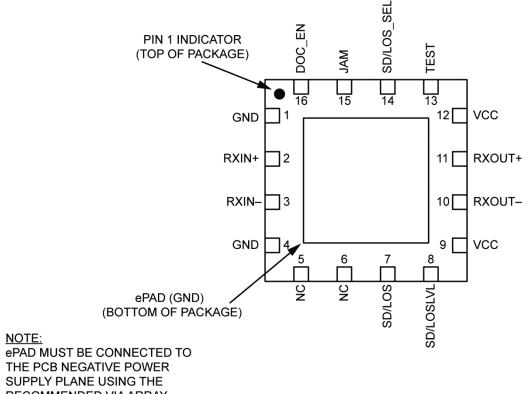
September 6, 2013

090613-1.0

### **Typical Application Circuit**



### **Ordering Information**


| Part Number                   | Package Type     | Operating Range | Package Marking                      | Lead Finish    |
|-------------------------------|------------------|-----------------|--------------------------------------|----------------|
| SY88063CLMG                   | 3mm × 3mm QFN-16 | Industrial      | 063C with Pb-Free bar-line indicator | NiPdAu Pb-Free |
| SY88063CLMG TR <sup>(1)</sup> | 3mm × 3mm QFN-16 | Industrial      | 063C with Pb-Free bar-line indicator | NiPdAu Pb-Free |

#### Note:

1. Tape and reel.

SY88063CL Micrel, Inc.

### **Pin Configuration**



RECOMMENDED VIA ARRAY

16-Pin 3mm × 3mm QFN (Top View)

# **Pin Description**

| Pin#  | Pin Name        | Pin Type                       | Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|-----------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | GND             | Negative Supply<br>Rail        | Negative Supply Rail. Connect to the PCB negative power supply plane that is also connected to the ePAD.                                                                                                                                                                                                                                                                                                                                                                        |
| 2     | RXIN+           | High-Speed<br>Data Input       | Differential Noninverting Data Input. LVPECL/CML compatible. AC-coupled with 10nF (high-frequency, low-ESR capacitor is recommended). Internally terminated with $50\Omega$ to $V_{CC} = 0.9V$ . AC-coupled only.                                                                                                                                                                                                                                                               |
| 3     | RXIN-           | High-Speed<br>Data Input       | Differential Inverting Data Input. LVPECL/CML-compatible. AC-coupled with 10nF (high-frequency, low-ESR capacitor is recommended). Internally terminated by $50\Omega$ to $V_{CC} = 0.9V$ . AC-coupled only.                                                                                                                                                                                                                                                                    |
| 4     | GND             | Negative Supply<br>Rail        | Negative Supply Rail. Connect to the PCB negative power supply plane that is also connected to the ePAD.                                                                                                                                                                                                                                                                                                                                                                        |
| 5     | NC              | No Connect                     | No Connect. Do not connect to logic circuits or power supply rails.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6     | NC              | No Connect                     | No Connect. Do not connect to logic circuits or power supply rails.                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7     | SD/LOS          | Open Collector<br>Logic Output | Output Status Indicator. Loss-of-signal (LOS) or signal detect (SD) open collector output externally terminated with $5k\Omega$ to $10k\Omega$ resistor to $V_{CC}$ . TTL compatible. LOS = High when RXIN± amplitude falls below the threshold set at the SD/LOSLVL pin. SD = Low when RXIN± amplitude falls below the threshold set at the SD/LOSLVL pin.                                                                                                                     |
| 8     | SD/LOSLVL       | Analog Input                   | Analog control input. Sets the trigger threshold for the LOS or SD status indicator signals. If SD/LOS_SEL = High (LOS selected), connect a resistor from the SD/LOSLVL pin (loss of signal threshold level) to $V_{CC}$ to adjust the LOS_Assert threshold for the RXIN± data inputs. If SD/LOS_SEL = Low (SD selected), connect a resistor from the SD/LOSLVL pin (signal detect threshold level) to $V_{CC}$ to adjust the SD_De-assert threshold for the RXIN± data inputs. |
| 9, 12 | V <sub>CC</sub> | Positive Supply<br>Rail        | Positive power supply input. Bypass with a $0.1\mu F$ capacitor in parallel with a $0.01\mu F$ low-ESR capacitor to GND as close as possible to the $V_{CC}$ pin.                                                                                                                                                                                                                                                                                                               |
| 10    | RXOUT-          | High-Speed<br>Data Output      | Differential inverting data output. CML compatible and internally terminated by $50\Omega$ to $V_{CC}$ . Can be AC- or DC-coupled to downstream devices.                                                                                                                                                                                                                                                                                                                        |
| 11    | RXOUT+          | High-Speed<br>Data Output      | Differential noninverting data output. CML compatible and internally terminated by $50\Omega$ to $V_{CC}$ . Can be AC- or DC-coupled to downstream devices.                                                                                                                                                                                                                                                                                                                     |
| 13    | TEST            | Test Pin                       | Factory test pin. For factory use only. Do not connect to logic circuits or power supply rails.                                                                                                                                                                                                                                                                                                                                                                                 |
| 14    | SD/LOS_SEL      | Logic Level<br>Input           | Input control signal. TTL-compatible logic input signal to select LOS or SD as the output signal. Internal ~18k $\Omega$ pull-up to V <sub>CC</sub> . Default = High (NC): LOS selected – normal operation LOS/SD_SEL = Low: SD selected and JAM operation is inverted                                                                                                                                                                                                          |
| 15    | JAM             | Logic Level<br>Input           | Input control signal. TTL-compatible input signal that enables or disables the RXOUT± output signals. Internal 27k $\Omega$ pull-up resistor to V <sub>CC</sub> . Can be connected to SD/LOS to form a SQUELCH function. When SD/LOS_SEL = High Default = High and RXOUT± outputs are disabled. Low = RXOUT± outputs are enabled Operation is inverted when SD/LOS_SEL = Low and SD is selected.                                                                                |

| Pin # | Pin Name | Pin Type                | Functional Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------|----------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 16    | DOC_EN   | Logic Level<br>Input    | Input Control Signal. TTL-compatible logic input signal that enables or disables the digital offset correction (DOC) circuit.  Default:  DOC_EN = High = Enable with internal 18kΩ pull-up to V <sub>CC</sub> if not connected to an external logic low or high signal.  DOC_EN = Low disables the digital offset correction function.  Toggling the DOC_EN signal from high to low to high will cause a reset of the DOC circuitry and initiate a new DOC routine to lock in new DOC values.  Note: Digital offset correction is not applied to large input signals. |  |  |
| ePAD  | GND      | Negative Supply<br>Rail | Exposed Thermal Pad. Must be soldered to PCB plane connected to the negative supply rail. The recommended via array is needed to remove heat from the device.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

# Absolute Maximum Ratings<sup>(2)</sup>

| Supply Voltage (V <sub>CC</sub> )      | 0V to +4.0V                                |
|----------------------------------------|--------------------------------------------|
| Input Voltage (RXIN±)                  | $V_{CC}$ – 1.5V to $V_{CC}$                |
| CML Output Voltage (V <sub>OUT</sub> ) | $V_{\rm CC}$ – 1.0V to $V_{\rm CC}$ + 0.5V |
| JAM Voltage                            | 0 to V <sub>CC</sub>                       |
| SD/LOSLVL Voltage                      | $V_{CC}$ – 1.3V to $V_{CC}$                |
| Lead Temperature (soldering, 20s)      | 260°C                                      |
| Storage Temperature (T <sub>s</sub> )  | 65°C to +150°C                             |

# Operating Ratings<sup>(3)</sup>

| Supply Voltage (V <sub>CC</sub> )         | +3.0V to +3.6V                |
|-------------------------------------------|-------------------------------|
| Ambient Temperature (T <sub>A</sub> )     | 40°C to +85°C                 |
| Junction Temperature (T <sub>J</sub> )    |                               |
| Package Thermal Resistance <sup>(4)</sup> | <sup>)</sup> 3mm × 3mm QFN-16 |
| $(\theta_{JA})$ Still-air                 | 60°C/W                        |
| (ψ <sub>JB</sub> )                        | 33°C/W                        |

### **DC Electrical Characteristics**

 $V_{CC}$  = 3.0 to 3.6V;  $T_A$  = -40°C to +85°C, typical values at  $V_{CC}$  = 3.3V,  $T_A$  = 25°C.

| Symbol                 | Parameter                       | Condition                      | Min.                    | Тур.                    | Max.                    | Units |
|------------------------|---------------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|-------|
| Icc                    | Power Supply Current            | Note 5                         |                         | 60                      | 75                      | mA    |
| SD/LOSLVL              | SD or LOS Threshold Voltage     |                                | V <sub>CC</sub> - 1.3   |                         | V <sub>CC</sub>         | V     |
| V <sub>OH</sub>        | RXOUT±<br>High Voltage          |                                | V <sub>CC</sub> - 0.020 | V <sub>CC</sub> - 0.005 | V <sub>CC</sub>         | V     |
| V <sub>OL</sub>        | RXOUT±<br>Low Voltage           |                                | V <sub>CC</sub> - 0.400 | V <sub>CC</sub> - 0.350 | V <sub>CC</sub> - 0.300 | ٧     |
| V <sub>OS_DOC_ON</sub> | Differential Output Offset      | Digital Offset Correction = ON |                         | ±10                     |                         | mV    |
| Z <sub>0</sub>         | Single-Ended Output Impedance   |                                | 45                      | 50                      | 55                      | Ω     |
| Zı                     | Single-Ended Input<br>Impedance |                                | 45                      | 50                      | 55                      | Ω     |

#### Notes:

- 2. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this datasheet. Exposure to absolute maximum ratings conditions may affect device reliability.
- 3. The datasheet limits are not guaranteed if the device is operated beyond the recommended operating conditions.
- Package thermal resistance assumes that the exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. Ψ<sub>JB</sub> and θ<sub>JA</sub> assumes still air and a 4-layer PCB, unless otherwise stated. It also assumes that the recommended via pattern and via sizes on the PCB are used.
- 5. DOC is enabled, outputs RXOUT $\pm$  are loaded with external 50 $\Omega$  loads, and the outputs are enabled.

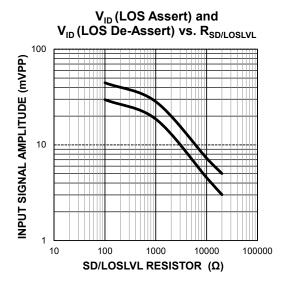
### **TTL DC Electrical Characteristics**

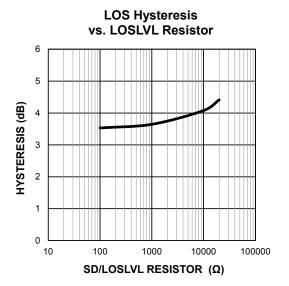
 $V_{CC}$  = 3.0 to 3.6V;  $T_A$  = -40°C to +85°C, typical values at  $V_{CC}$  = 3.3V,  $T_A$  = 25°C.

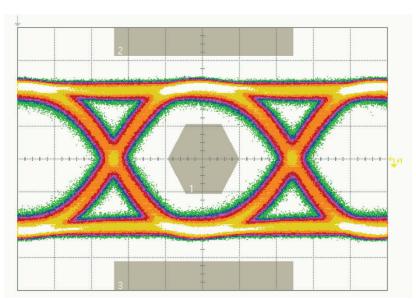
| Symbol          | Parameter                                     | Condition                         | Min. | Тур. | Max. | Units |
|-----------------|-----------------------------------------------|-----------------------------------|------|------|------|-------|
| V <sub>IH</sub> | JAM, DOC_EN, SD/LOS_SEL<br>Input High Voltage |                                   | 2.0  |      |      | V     |
| VIL             | JAM, DOC_EN, SD/LOS_SEL<br>Input Low Voltage  |                                   |      |      | 0.8  | V     |
|                 | JAM, DOC_EN, SD/LOS_SEL<br>Input High Current | V <sub>IN</sub> = 2.7V            |      |      | 20   | μА    |
|                 |                                               | V <sub>IN</sub> = V <sub>CC</sub> |      |      | 100  |       |
| I <sub>IL</sub> | JAM, DOC_EN, SD/LOS_SEL<br>Input Low Current  | V <sub>IN</sub> = 0.4V            | -0.3 |      |      | mA    |
| V <sub>OH</sub> | SD or LOS Output High Level                   | Sourcing 100μA                    | 2.4  |      |      | V     |
| V <sub>OL</sub> | SD or LOS Output Low Level                    | Sinking 2mA                       |      |      | 0.4  | V     |

### **AC Electrical Characteristics**

 $V_{CC}$  = 3.3V ±10%,  $T_A$  = -40°C to +85°C. Typical values at  $V_{CC}$  = 3.3V,  $T_A$  = 25°C;  $R_{LOAD}$  = 50 $\Omega$  to  $V_{CC}$ .

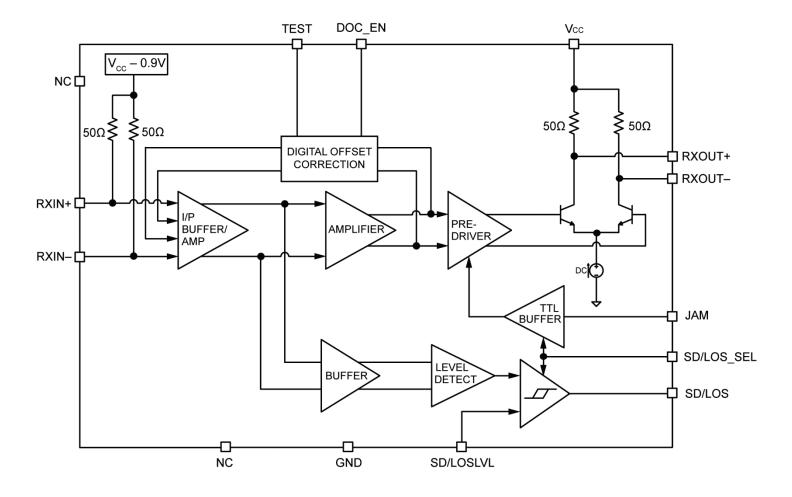

| Symbol                                                                        | Parameter                                                      | Condition                             | Min. | Тур. | Max. | Units            |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|------|------|------|------------------|--|
| t <sub>r</sub> , t <sub>f</sub>                                               | Output Rise/Fall Time (20% to 80%)                             | Note 6                                |      | 25   | 40   | ps               |  |
|                                                                               | Deterministic                                                  | Note 7                                | 10   |      |      | 20               |  |
| t <sub>JITTER</sub>                                                           | Random                                                         | Note 8                                |      | 1    |      | ps               |  |
| V <sub>ID_11.3G</sub>                                                         | Differential Input Voltage Swing                               | Note 9. See Figure 1.                 | 5    |      | 1800 | $mV_{PP}$        |  |
| V <sub>ID_12.5G</sub>                                                         | Differential Input Voltage Swing                               | Note 9. See Figure 1.                 | 10   |      | 1800 | mV <sub>PP</sub> |  |
| V <sub>OD</sub>                                                               | Differential Output Voltage Swing                              | Note 6                                | 600  | 700  | 800  | $mV_{PP}$        |  |
| t <sub>LOS_D</sub> ; t <sub>LOS_A</sub> t <sub>SD_D</sub> ; t <sub>SD_A</sub> | LOS De-assert, LOS Assert Time<br>SD De-assert, SD Assert Time | Note 10                               |      | 75   | 120  | ns               |  |
| LOS <sub>AL_20k</sub>                                                         | Low LOS Assert Level                                           | $R_{LOSLVL} = 20k\Omega$ , Note 9     |      | 3    |      | $mV_{PP}$        |  |
| LOS <sub>DL_20k</sub>                                                         | Low LOS De-assert Level                                        | $R_{LOSLVL} = 20k\Omega$ , Note 9     |      | 5    |      | $mV_{PP}$        |  |
| HYS <sub>L_20k</sub>                                                          | Low LOS Hysteresis                                             | $R_{LOSLVL} = 20k\Omega$ , Note 11    | 2    | 4.4  | 6    | dB               |  |
| LOS <sub>AM_10k</sub>                                                         | Medium LOS Assert Level                                        | $R_{LOSLVL} = 10k\Omega$ , Note 9     |      | 4.5  |      | $mV_{PP}$        |  |
| LOS <sub>DM_10k</sub>                                                         | Medium LOS De-assert Level                                     | $R_{LOSLVL}$ = 10k $\Omega$ , Note 9  |      | 7.3  |      | $mV_{PP}$        |  |
| HYS <sub>M_10k</sub>                                                          | Medium LOS Hysteresis                                          | $R_{LOSLVL}$ = 10k $\Omega$ , Note 11 | 2    | 4.1  | 6    | dB               |  |
| LOS <sub>AH1_1k</sub>                                                         | High1 LOS Assert Level                                         | $R_{LOSLVL} = 1k\Omega$ , Note 9      |      | 18.6 |      | $mV_{PP}$        |  |
| LOS <sub>DH1_1k</sub>                                                         | High1 LOS De-assert Level                                      | $R_{LOSLVL} = 1k\Omega$ , Note 9      |      | 28.3 |      | $mV_{PP}$        |  |
| HYS <sub>H1_1k</sub>                                                          | High1 LOS Hysteresis                                           | $R_{LOSLVL}$ = 1k $\Omega$ , Note 11  | 2    | 3.6  | 6    | dB               |  |
| LOS <sub>AH2_100</sub>                                                        | High2 LOS Assert Level                                         | $R_{LOSLVL}$ = 100 $\Omega$ , Note 9  |      | 29.7 |      | $mV_{PP}$        |  |
| LOS <sub>DH2_100</sub>                                                        | High2 LOS De-assert Level                                      | $R_{LOSLVL}$ = 100 $\Omega$ , Note 9  |      | 44.6 |      | $mV_{PP}$        |  |
| HYS <sub>H2_100</sub>                                                         | High2 LOS Hysteresis                                           | $R_{LOSLVL}$ = 100 $\Omega$ , Note 11 | 2    | 3.5  | 6    | dB               |  |
| A <sub>V(Diff)_063C</sub>                                                     | Differential Voltage Gain                                      |                                       |      | 44   |      | dB               |  |
| S <sub>21_063C</sub>                                                          | Single-Ended Small-Signal Gain                                 |                                       | 32   | 38   |      | dB               |  |
| tDOC_DELAY                                                                    | DOC Delay Time                                                 |                                       | -    | 15   |      | μs               |  |
| t <sub>DOC_LOCK</sub>                                                         | DOC Lock Time                                                  |                                       |      | 150  |      | μs               |  |


#### Note:


- 6. Amplifier is in limiting mode. Input is a 200MHz square wave.
- 7. Deterministic jitter is measured using 10Gbps K28.5 pattern,  $V_{ID}$  = 20m $V_{PP}$ .
- 8. Random jitter is measured using 10Gbps K28.7 pattern,  $V_{ID}$  = 20m $V_{PP}$ .
- See "Typical Operating Characteristics" for a graph showing how to choose a particular R<sub>LOSLVL</sub> for a particular LOS assert and its associated deassert amplitude.
- 10. In real world applications, the LOS de-assert/assert time can be strongly influenced by the RC time constant of the AC-coupling capacitor and the 50Ω input termination. To keep this time low, use a decoupling capacitor with the lowest value that is allowed by the data rate and the number of consecutive identical bits in the application (typical values are in the range of 0.001μF to 0.1μF).
- 11. This specification defines electrical hysteresis as 20log (LOS de-assert/LOS assert). The ratio between optical hysteresis and electrical hysteresis is found to vary between 1.5 and 2, depending on the level of received optical power and ROSA characteristics.

### **Typical Operating Characteristics**

 $V_{CC}$  = 3.3V,  $T_A$  = 25°C,  $R_{LOAD}$  = 50 $\Omega$  to  $V_{CC}$ , unless otherwise stated.








Linear Mode 10.3G Output with 5mV<sub>PP</sub> Differential Input Signal

### **Functional Block Diagram**



### **Functional Description**

The SY88063CL is a high-sensitivity, high-bandwidth limiting post amplifier. It operates from a single +3.3V power supply across the entire industrial temperature range of –40°C to +85°C.

Signals with data rates from 1.0625Gbps to 12.5Gbps and amplitudes as small as  $5mV_{pp}$  are supported. Figure 1 shows the allowed input voltage swing.

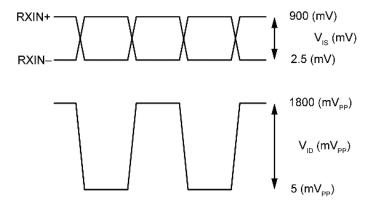



Figure 1. V<sub>IS</sub> and V<sub>ID</sub> Definition

The SY88063CL has a selectable SD or LOS status output signal that can be fed back to the JAM input to perform the SQUELCH function for output stability if there is no signal at the input. SD/LOSLVL sets the sensitivity of the input amplitude detection.

The SY88063CL has a user-selectable, integrated digital offset correction function to cancel internally generated output offsets.

#### Input Amplifier/Buffer

Figure 2 shows a simplified schematic of the input stage. The high sensitivity of the input amplifier allows signals as small as  $5\text{mV}_{pp}$  to be detected and amplified. The input amplifier allows input signals as large as  $1800\text{mV}_{pp}$ . Input small signals are amplified with a typical 44dB differential voltage gain.

#### **Output Buffer**

The SY88063CL CML output buffer is designed to drive  $50\Omega$  impedance transmission lines and is internally terminated with  $50\Omega$  to  $V_{CC}$ . Figure 3 shows a simplified schematic of the output stage.

#### Signal Detect/Loss-of-Signal (SD/LOS)

The SY88063CL generates a user-selectable (SD/LOS\_SEL pin) signal detect (SD) or loss-of-signal (LOS) open-collector TTL output, as shown in Figure 4. LOS is used to determine whether the input amplitude is too small to be considered as a valid input. LOS asserts high if the input amplitude falls below the threshold set by

SD/LOSLVL and de-asserts low otherwise. LOS can be fed back to the JAM input to perform the SQUELCH function and to maintain output stability under a LOS condition. JAM de-asserts the true output signal low without removing the input signals. Typically, 4dB LOS hysteresis is provided to prevent chattering.

When SD/LOS\_SEL is used to select the SD output on the SD/LOS pin, SD is asserted when the differential input signal amplitude exceeds the level set by the SD/LOSLVL resistor. The JAM operation is inverted when SD is selected.

### Signal Detect/Loss-of-Signal Level Setting

A programmable SD/LOS level set pin (SD/LOSLVL) sets the threshold of the input amplitude detection. Connecting an external resistor between  $V_{\text{CC}}$  and SD/LOSLVL sets the threshold voltage. This voltage ranges from  $V_{\text{CC}}$  to  $V_{\text{CC}}-1.3\text{V}.$  The external resistor creates a voltage divider between  $V_{\text{CC}}$  and  $V_{\text{CC}}-1.3\text{V},$  as shown in Figure 5.

### **Hysteresis**

The SY88063CL provides typically 4dB LOS electrical hysteresis, which is defined as 20log (VIN<sub>LOS\_De-Assert</sub>  $\div$  VIN<sub>LOS\_Assert</sub>). Because the relationship of the voltage output of the ROSA to optical power at its input is linear, the optical hysteresis is typically half of the electrical hysteresis reported in the datasheet. In practice the ratio between electrical and optical hysteresis is found to be between 1.5 and 1.8. Thus, 4dB electrical hysteresis corresponds to an optical hysteresis within the range of 2dB to 2.4dB.

### **Digital Offset Correction (DOC)**

The digital offset correction (DOC) circuit compensates for the inherent offsets found in high-gain amplifier circuits and minimizes the offset seen at the outputs. DOC is a user-selectable feature using the DOC\_EN pin as defined in the "Pin Description" table.

Conventional analog offset compensation techniques may be susceptible to drift from long continuous identical digit (CID) patterns. They can also add additional cost due to the extra DAC and manufacturing setup time needed to optimize each individual module. The SY88063CL avoids both of these issues and provides a performance/cost optimized solution.

The DOC circuitry automatically detects any internal device offsets and locks the correction values but does not apply offset correction to large input signals.

The DOC is enabled by default unless DOC\_EN is pulled low by an external logic level signal. It can be reset by toggling the DOC\_EN pin high-to-low-to-high. The DOC reset routine typically completes in 200µs.

### **Functional Circuit Structures**

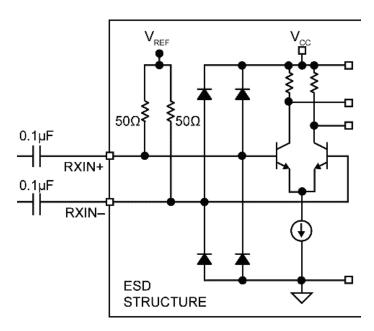



Figure 2. Input Structure

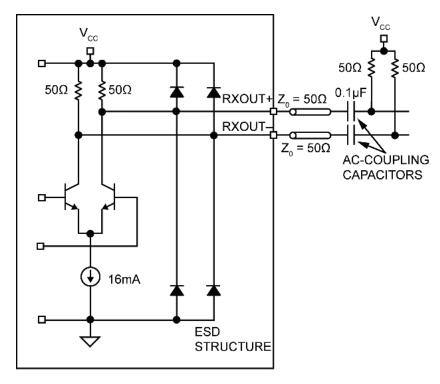



Figure 3. Output Structure

# **Functional Circuit Structures (Continued)**

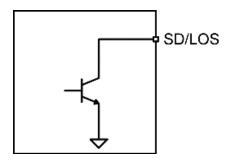
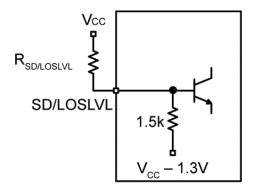
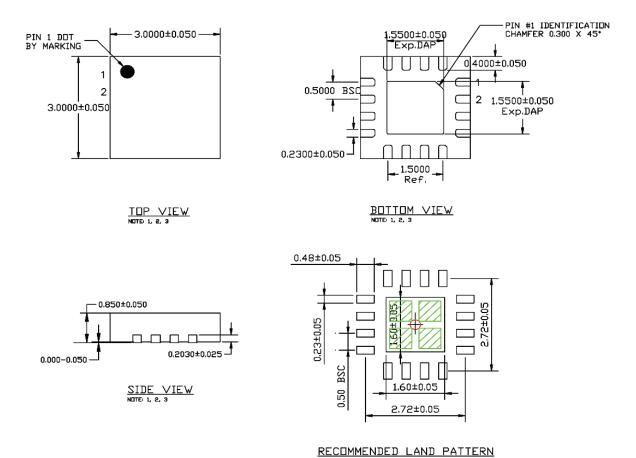



Figure 4. SD/LOS Output Structure





Figure 5. SD/LOSLVL Setting Circuit

### **Related Product and Support Documentation**

| Document Number   | Title                                                         | Application Note Link                                       |  |  |
|-------------------|---------------------------------------------------------------|-------------------------------------------------------------|--|--|
| AN-45             | Notes on Sensitivity and Hysteresis in Micrel Post Amplifiers | www.micrel.com/ PDF/HBW/App-Notes/an-45.pdf                 |  |  |
| SY88053CL_63CL_EB | SY88053CL/SY88063CL<br>Evaluation Board                       | http://www.micrel.com/ PDF/Eval-Board/SY88053CL 63CL EB.pdf |  |  |

SY88063CL Micrel, Inc.

# Package Information<sup>(12)</sup>



- 1. MAX PACKAGE WARPAGE IS 0.05 MM

- 1. MAX PACKAGE WARPAGE IS 0.05 MM
  2. MAX ALLUWABLE BURR IS 0.076MM IN ALL DIRECTIONS
  3. PIN #1 IS ON TOP WILL BE LASER MARKED
  4. RED CIRCLE IN LAND PATTERN INDICATE THERMAL VIA.
  SIZE SHOULD BE 0.30-0.3M IN DIAMETER AND SHOULD BE
  CONNECTED TO GND FOR MAX THERMAL PERFORMANCE
  5. GREEN RECTANGLES (SHADED AREA) INDICATE SOLDER
  STENCIL OPENING ON EXPOSED PAD AREA. SIZE SHOULD BE
  0.60×0.60 MM IN SIZE, 0.20 MM SPACING.

#### 16-Pin (3mm × 3mm) QFN-16

#### Note:

12. Package information is correct as of the publication date. For updates and most current information, go to <a href="www.micrel.com">www.micrel.com</a>.

#### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2013 Micrel, Incorporated