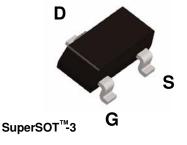
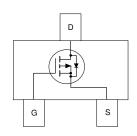


ON Semiconductor®

FDN336P

Single P-Channel 2.5V Specified PowerTrench® MOSFET


General Description


This P-Channel 2.5V specified MOSFET is produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for portable electronics applications: load switching and power management, battery charging circuits and DC/DC conversion.

Features

- -1.3 A, -20 V. $R_{DS(ON)} = 0.20 \Omega @ V_{GS} = -4.5 V$ $R_{DS(ON)} = 0.27 \Omega @ V_{GS} = -2.5 V$
- Low gate charge (3.6 nC typical)
- $\bullet \qquad \text{High performance trench technology for extremely} \\ \text{low } R_{\text{DS}(\text{ON})} \\$
- SuperSOTTM -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
I _D	Drain Current - Continuous	(Note 1a)	-1.3	А
	- Pulsed		-10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
336	FDN336P	7"	8mm	3000 units

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS	·			•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \ I_D = -250 \ \mu\text{A}$	-20			V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_D = -250 μ A, Referenced to 25 $^{\circ}$ C		-16		mV /°C
I _{DSS} Z	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, \ V_{GS} = 0 \text{ V}$			-1	μΑ
		$T_J = 55^{\circ}C$			-10	μΑ
GSSF	Gate - Body Leakage, Forward	$V_{GS} = 8 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
GSSR	Gate - Body Leakage, Reverse	$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
ON CHARA	CTERISTICS (Note 2)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.4	-0.9	-1.5	٧
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C		3		mV /°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, \ I_{D} = -1.3 \text{ A}$		0.122	0.2	Ω
-(- /		T _J =125°C		0.18	0.32	1
		$V_{GS} = -2.5 \text{ V}, I_D = -1.1 \text{ A}$		0.19	0.27	1
D(ON)	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$	-5			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -4.5 \text{ V}, I_{D} = -2 \text{ A}$		4		S
DYNAMIC (HARACTERISTICS	•				
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \ V_{GS} = 0 \text{ V},$ f = 1.0 MHz		330		pF
O _{oss}	Output Capacitance	f = 1.0 MHz		80		pF
O _{rss}	Reverse Transfer Capacitance			35		pF
SWITCHING	CHARACTERISTICS (Note 2)					
D(on)	Turn - On Delay Time	$V_{DD} = -5 \text{ V}, \ I_{D} = -0.5 \text{ A},$		7	15	ns
r	Turn - On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		12	22	ns
D(off)	Turn - Off Delay Time			16	26	ns
f	Turn - Off Fall Time			5	12	ns
Q_g	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -2 \text{ A}, V_{GS} = -4.5 \text{ V}$		3.6	5	nC
Q_{gs}	Gate-Source Charge	V _{GS} = -4.5 V		8.0		nC
Q_{gd}	Gate-Drain Charge			0.7		nC
DRAIN-SOL	RCE DIODE CHARACTERISTICS AND MA	XIMUM RATINGS				_
S	Maximum Continuous Drain-Source Diode Fo	orward Current			-0.42	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -0.42 \text{ A}$ (Note)		-0.7	-1.2	V

Note

^{1.} R_{BA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BAC} is guaranteed by design while R_{BAC} is determined by the user's board design.

a. 250°C/W when mounted on a 0.02 in² pad of 2oz Cu.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz Cu.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2.0\%$.

Typical Electrical Characteristics

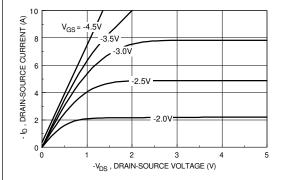


Figure 1. On-Region Characteristics.

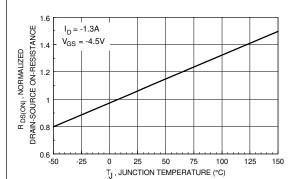


Figure 3. On-Resistance Variation with Temperature.

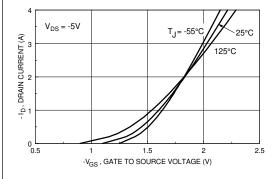


Figure 5. Transfer Characteristics.

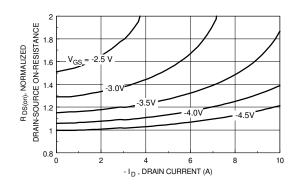


Figure 2. On-Resistance Variation with Drain Current and Gate

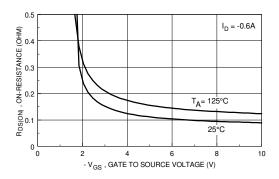


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

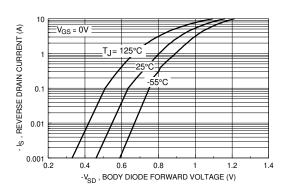


Figure 6. Body Diode Forward Voltage

Variation with Source

Current

and Temperature.

Typical Electrical Characteristics (continued)

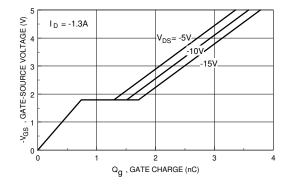


Figure 7. Gate Charge Characteristics.

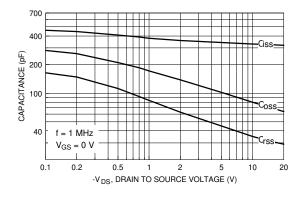


Figure 8. Capacitance Characteristics.

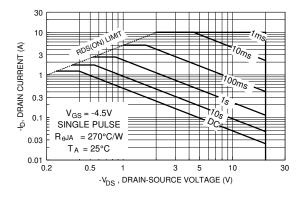


Figure 9. Maximum Safe Operating Area.

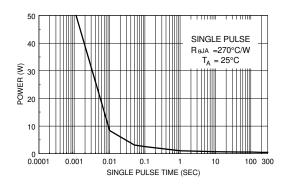


Figure 10. Single Pulse Maximum Power Dissipation.

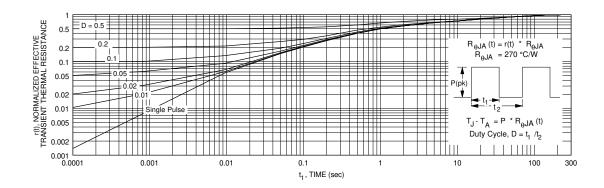


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative