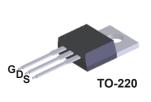
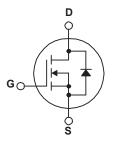


ON Semiconductor®

# FDP085N10A N-Channel PowerTrench<sup>®</sup> MOSFET 100 V, 96 A, 8.5 m $\Omega$

### Features


- $R_{DS(on)}$  = 7.35 m $\Omega$  (Typ.) @ V<sub>GS</sub> = 10 V, I<sub>D</sub> = 96 A
- Fast Switching Speed
- Low Gate Charge, Q<sub>G</sub> = 31 nC (Typ.)
- High Performance Trench Technology for Extremely Low  $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant


## Description

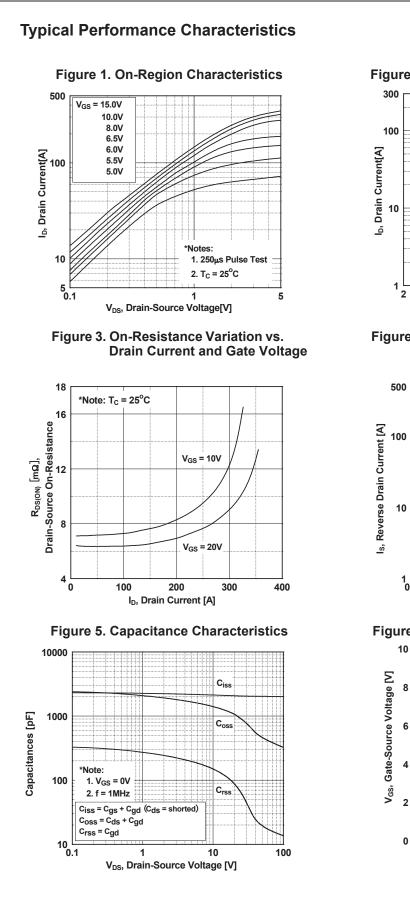
This N-Channel MOSFET is produced using ON Semiconductor's PowerTrench<sup>®</sup> process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

### Applications

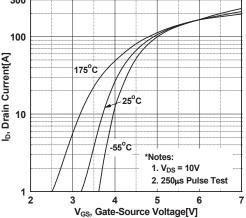
- · Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies



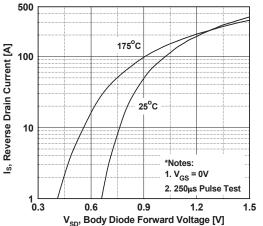



### **MOSFET Maximum Ratings** T<sub>C</sub> = 25°C unless otherwise noted.

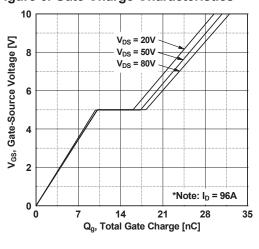
| Symbol                            |                            | FDP085N10A-F102                                    | Unit   |      |  |  |
|-----------------------------------|----------------------------|----------------------------------------------------|--------|------|--|--|
| V <sub>DSS</sub>                  | Drain to Source Voltage    | 100                                                | V      |      |  |  |
| V <sub>GSS</sub>                  | Gate to Source Voltage     | ±20                                                | V      |      |  |  |
| 1                                 | Drain Current              | - Continuous (T <sub>C</sub> = 25 <sup>o</sup> C)  | 96     | Α    |  |  |
| D                                 | Drain Current              | - Continuous (T <sub>C</sub> = 100 <sup>o</sup> C) | 68     | A    |  |  |
| I <sub>DM</sub>                   | Drain Current              | - Pulsed (Note                                     | 1) 384 | A    |  |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche E  | 2) 269                                             | mJ     |      |  |  |
| dv/dt                             | Peak Diode Recovery dv/dt  | 3) 6.0                                             | V/ns   |      |  |  |
| P <sub>D</sub>                    | Power Dissipation          | (T <sub>C</sub> = 25°C)                            | 188    | W    |  |  |
|                                   | Fower Dissipation          | - Derate Above 25°C                                | 1.25   | W/ºC |  |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Terr | -55 to +175                                        | °C     |      |  |  |
| Τ <sub>L</sub>                    | Maximum Lead Temperatur    | 300                                                | °C     |      |  |  |


# **Thermal Characteristics**

| Symbol         | Parameter                                     | FDP085N10A-F102 | Unit |  |
|----------------|-----------------------------------------------|-----------------|------|--|
| $R_{\thetaJC}$ | Thermal Resistance, Junction to Case, Max.    | 0.8             | °C/W |  |
| $R_{	hetaJA}$  | Thermal Resistance, Junction to Ambient, Max. | 62.5            | 0/11 |  |

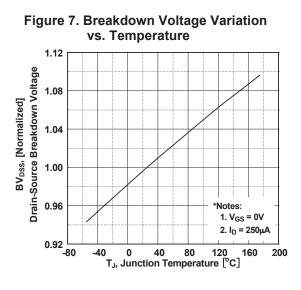

| Part Ni                           | ımber                                                          | Top Mark                              | Package                                                             | Packing Method                                                                            | Reel Size | Тар  | e Width  | Qua  | ntity |
|-----------------------------------|----------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------|------|----------|------|-------|
| FDP085N10A-F102 FDP085N10A TO-220 |                                                                | Tube                                  | N/A                                                                 |                                                                                           | N/A       |      | 50 units |      |       |
| Electric                          | al Chara                                                       | acteristics T <sub>c</sub> =          | 25ºC unless                                                         | otherwise noted.                                                                          |           |      |          |      |       |
| Symbol                            | Parameter                                                      |                                       |                                                                     | Test Conditions                                                                           |           | Min. | Тур.     | Max. | Unit  |
| Off Chara                         | cteristics                                                     | 6                                     |                                                                     |                                                                                           |           |      |          |      |       |
| BV <sub>DSS</sub>                 | Drain to Source Breakdown Voltage                              |                                       |                                                                     | I <sub>D</sub> = 250 μA, V <sub>GS</sub> = 0 V,T <sub>C</sub> = 25 <sup>o</sup> C         |           | 100  | -        | -    | V     |
| ΔΒV <sub>DSS</sub><br>/ΔΤJ        | Breakdown Voltage Temperature<br>Coefficient                   |                                       |                                                                     | I <sub>D</sub> = 250 μA, Reference                                                        | -         | 0.07 | -        | V/ºC |       |
|                                   | Zero Ga                                                        | te Voltage Drain Curr                 | V <sub>DS</sub> = 80 V, V <sub>GS</sub> = 0 V                       |                                                                                           | -         | -    | 1        |      |       |
| DSS                               | Zero Gate Voltage Drain Current                                |                                       |                                                                     | V <sub>DS</sub> = 80 V, T <sub>C</sub> = 150°C                                            |           | -    | 50       | 500  | μΑ    |
| I <sub>GSS</sub>                  | Gate to Body Leakage Current                                   |                                       |                                                                     | $V_{GS}$ = ±20 V, $V_{DS}$ = 0                                                            | -         | -    | ±100     | nA   |       |
| On Chara                          | cteristics                                                     | 5                                     |                                                                     |                                                                                           |           |      |          |      |       |
| V <sub>GS(th)</sub>               | Gate Threshold Voltage                                         |                                       |                                                                     | V <sub>GS</sub> = V <sub>DS</sub> , I <sub>D</sub> = 250 μA                               |           |      | -        | 4.0  | V     |
| R <sub>DS(on)</sub>               | Static D                                                       | Static Drain to Source On Resistance  |                                                                     | $V_{GS} = 10 \text{ V}, I_D = 96 \text{ A}$                                               |           | -    | 7.35     | 8.5  | mΩ    |
| 9 <sub>FS</sub>                   | Forward                                                        | Transconductance                      | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 96 A                       | -                                                                                         | 72        | -    | S        |      |       |
| Dynamic                           | Characte                                                       | ristics                               |                                                                     |                                                                                           |           |      |          |      |       |
| C <sub>iss</sub>                  |                                                                | pacitance                             |                                                                     |                                                                                           | -         | 2025 | 2695     | pF   |       |
| C <sub>oss</sub>                  | Output Capacitance<br>Reverse Transfer Capacitance             |                                       | V <sub>DS</sub> = 50 V, V <sub>GS</sub> = 0 V,<br>f = 1 MHz         |                                                                                           | -         | 468  | 620      | pF   |       |
| C <sub>rss</sub>                  |                                                                |                                       |                                                                     |                                                                                           | -         | 20   | -        | pF   |       |
| C <sub>oss(er)</sub>              | Energy F                                                       | Energy Releted Output Capacitance     |                                                                     | V <sub>DS</sub> = 50 V, V <sub>GS</sub> = 0 V                                             |           | -    | 752      | -    | pF    |
| Q <sub>g(tot)</sub>               | Total Ga                                                       | te Charge at 10V                      |                                                                     |                                                                                           |           | -    | 31       | 40   | nC    |
| Q <sub>gs</sub>                   | Gate to Source Gate Charge<br>Gate Charge Threshoid to Plateau |                                       | $V_{GS}$ = 10 V, $V_{DS}$ = 50 V,<br>I <sub>D</sub> = 96 A (Note 4) |                                                                                           | -         | 9.7  | -        | nC   |       |
| Q <sub>gs2</sub>                  |                                                                |                                       |                                                                     |                                                                                           | -         | 5.0  | -        | nC   |       |
| Q <sub>gd</sub>                   | Gate to Drain "Miller" Charge                                  |                                       |                                                                     |                                                                                           | -         | 7.5  | -        | nC   |       |
| ESR                               | Equivalent Series Resistance (G-S)                             |                                       |                                                                     | f = 1 MHz                                                                                 | -         | 0.97 | -        | Ω    |       |
| Switching                         | Charact                                                        | eristics                              |                                                                     |                                                                                           |           |      |          |      |       |
| t <sub>d(on)</sub>                | Turn-On                                                        | Delay Time                            |                                                                     | $V_{DD}$ = 50 V, I <sub>D</sub> = 96 A,<br>V <sub>GS</sub> = 10 V, R <sub>G</sub> = 4.7 Ω |           | -    | 18       | 46   | ns    |
| t <sub>r</sub>                    | Turn-On                                                        | Rise Time                             |                                                                     |                                                                                           |           | -    | 22       | 54   | ns    |
| t <sub>d(off)</sub>               | Turn-Off                                                       | Delay Time                            |                                                                     |                                                                                           |           | -    | 29       | 68   | ns    |
| t <sub>f</sub>                    | Turn-Off                                                       | Fall Time                             |                                                                     | _                                                                                         | -         | 8    | 26       | ns   |       |
| ວrain-Soເ                         | irce Diod                                                      | le Characteristic                     | S                                                                   |                                                                                           |           |      |          |      |       |
| I <sub>S</sub>                    | Maximum Continuous Drain to Source Diode Forward Current       |                                       |                                                                     |                                                                                           | -         | -    | 96       | Α    |       |
| SM                                | Maximum Pulsed Drain to Source Diode For                       |                                       |                                                                     | rward Current                                                                             | -         | -    | 384      | Α    |       |
| V <sub>SD</sub>                   | Drain to                                                       | Drain to Source Diode Forward Voltage |                                                                     | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 96 A                                             |           | -    | -        | 1.3  | V     |
| t <sub>rr</sub>                   | Reverse                                                        | Recovery Time                         |                                                                     | $V_{DD} = 50 V, V_{GS} = 0 V, I_{SD} = 96 A,$<br>$dI_F/dt = 100 A/\mu s$                  |           | -    | 59       | -    | ns    |
| Q <sub>rr</sub>                   | Reverse                                                        | Recovery Charge                       |                                                                     |                                                                                           |           | -    | 80       | -    | nC    |




#### Figure 2. Transfer Characteristics



#### Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature










### Typical Performance Characteristics (Continued)





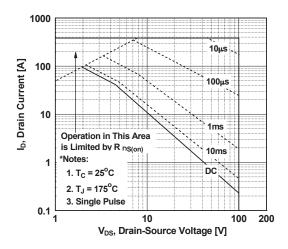
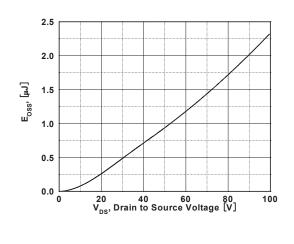
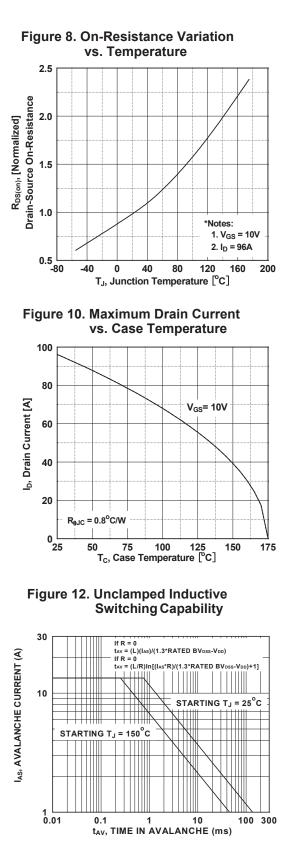
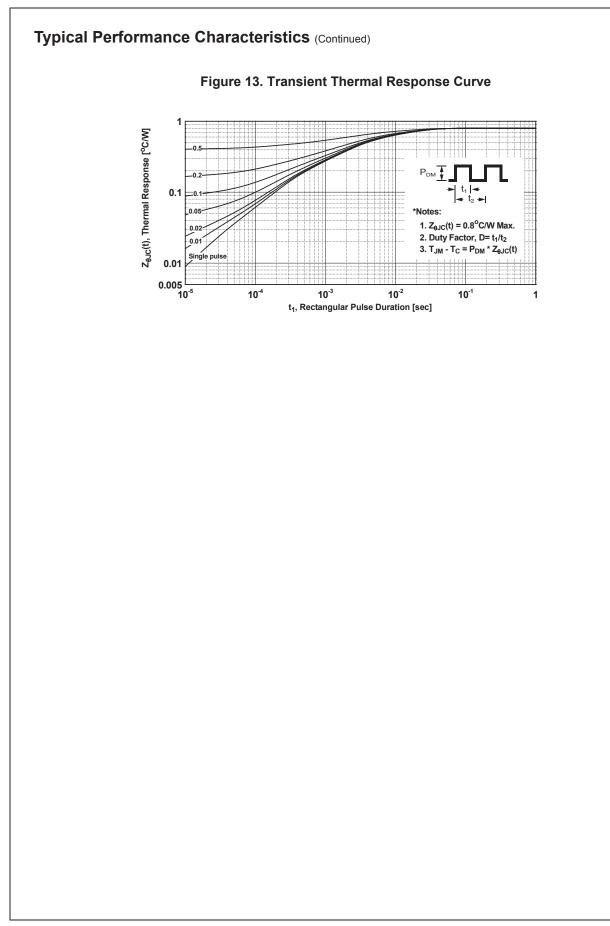
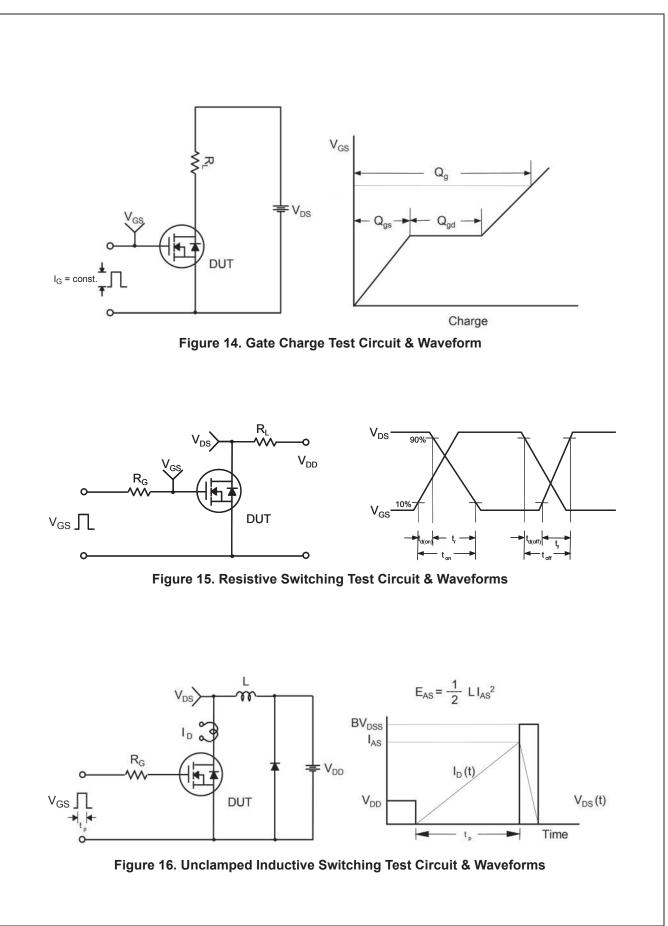
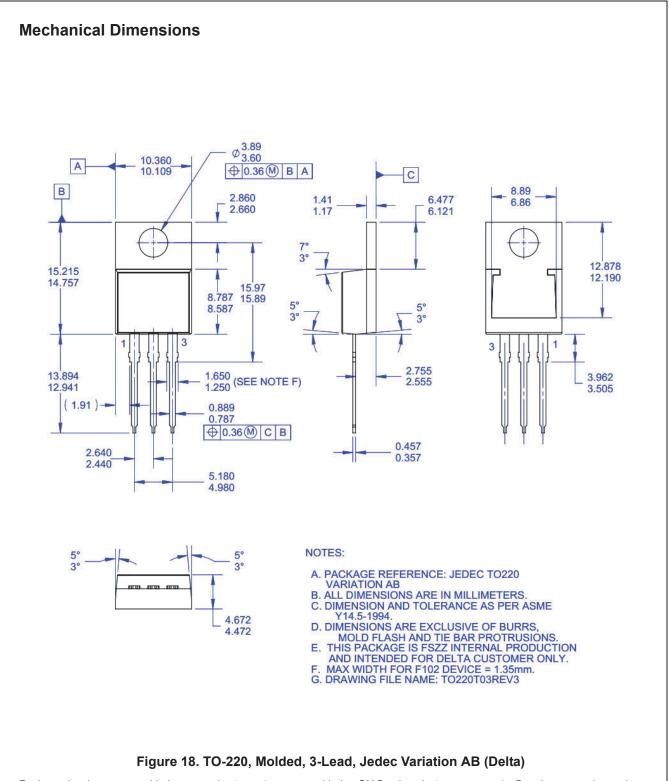







Figure 11. Eoss vs. Drain to Source Voltage










DUT +  $v_{DS}$ 0 I<sub>SD</sub> L Driver R<sub>G</sub>, Same Type as DUT Ļ v₀₀ ∏∏ V<sub>GS</sub> • dv/dt controlled by  $R_{G}$ • I<sub>SD</sub> controlled by pulse period Î Gate Pulse Width  $V_{GS}$ D = Gate Pulse Period 10V (Driver)  $\mathbf{I}_{\mathrm{FM}}$  , Body Diode Forward Current I <sub>SD</sub> di/dt (DUT)  $\mathsf{I}_{\mathsf{RM}}$ Body Diode Reverse Current  $V_{DS}$ (DUT) Body Diode Recovery dv/dt  $V_{\rm SD}$ V<sub>PD</sub> Body Diode Forward Voltage Drop Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms



Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

FDP085N10A — N-Channel PowerTrench<sup>®</sup> MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative