

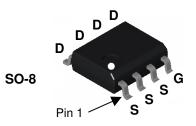
ON Semiconductor®

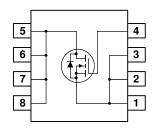
FDS8449

40V N-Channel PowerTrench® MOSFET

General Description

These N-Channel MOSFETs are produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.


Application


- Inverter
- Power Supplies

Features

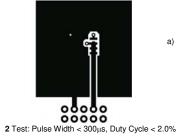
- 7.6 A, 40V $R_{DS(on)} = 29m\Omega$ @ $V_{GS} = 10V$ $R_{DS(on)} = 36m\Omega$ @ $V_{GS} = 4.5V$
- High power handling capability in a widely used surface mount package
- RoHS compliant

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		40	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	7.6	А
	– Pulsed		50	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	125	
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	25	


Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS8449	FDS8449	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	urce Avalanche Ratings (Note	3)	I.		I	1
E _{AS}	Drain-Source Avalanche Energy	$V_{DD} = 40 \text{ V}, I_D = 7.3 \text{ A}, \ L = 1 \text{ mH}$			27	mJ
I _{AS}	Drain-Source Avalanche Current			7.3		Α
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	40			V
$\Delta BV_{DSS} \over \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		34		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1	1.9	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		- 5		mV/°C
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$\begin{split} V_{GS} &= 10 \ V, & I_D = 7.6 \ A \\ V_{GS} &= 4.5 \ V, & I_D = 6.8 \ A \\ V_{GS} &= 10 \ V, I_D = 7.6 \ A, T_J = 125 ^{\circ} C \end{split}$		21 26 29	29 36 43	mΩ
g FS	Forward Transconductance	V _{DS} = 10 V, I _D = 7.6 A		21		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V},$		760		pF
Coss	Output Capacitance	f = 1.0 MHz		100		pF
C _{rss}	Reverse Transfer Capacitance			60		pF
R_{G}	Gate Resistance	f = 1.0 MHz		1.2		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 20 \text{ V}, \qquad I_D = 1 \text{ A},$		9	18	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
$t_{\text{d(off)}} \\$	Turn-Off Delay Time			23	17	ns
t_{f}	Turn-Off Fall Time			3	6	ns
Q_g	Total Gate Charge	$V_{DS} = 20 \text{ V}, \qquad I_D = 7.6 \text{ A},$		7.7	11	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 5 V		2.4		nC
Q_{gd}	Gate-Drain Charge			2.8		nC
Drain-So	ource Diode Characteristics					
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \qquad I_S = 2.1 \text{ A (Note 2)}$		0.76	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_{\rm F} = 7.6 \text{ A}, \qquad d_{\rm iF}/d_{\rm t} = 100 \text{ A/µs}$		17		nS
Q _{rr}	Diode Reverse Recovery Charge	$u_{iF} - 7.0 \Lambda$, $u_{iF}/u_{t} = 100 \Lambda \mu s$		7		nC

Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

50°C/W when mounted on a 1in2 pad of 2 oz copper

b) 125°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

3. BV(avalanche) Single-Pulse rating is guaranteed if device is operated within the UIS SOA boundary of the device.

Typical Characteristics

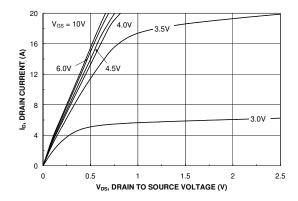


Figure 1. On-Region Characteristics.

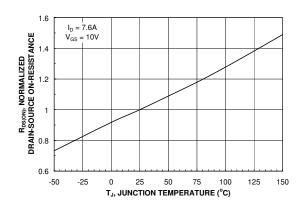


Figure 3. On-Resistance Variation with Temperature.

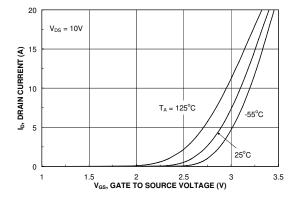


Figure 5. Transfer Characteristics.

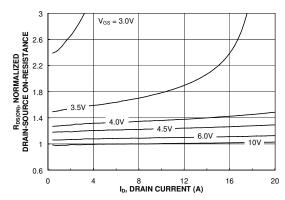


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

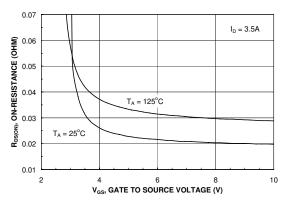


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

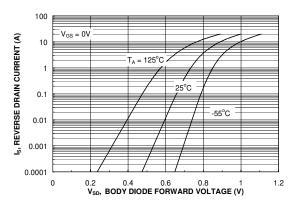


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

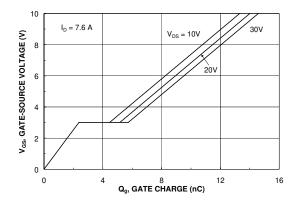


Figure 7. Gate Charge Characteristics.

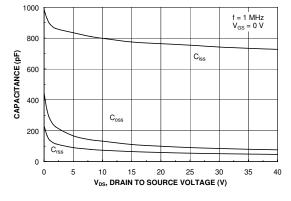


Figure 8. Capacitance Characteristics.

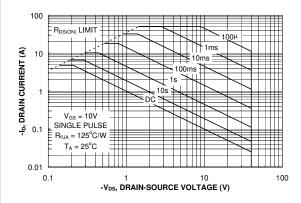


Figure 9. Maximum Safe Operating Area.

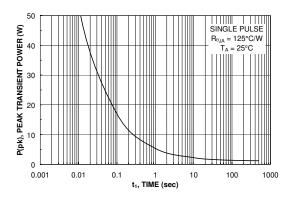


Figure 10. Single Pulse Maximum Power Dissipation.

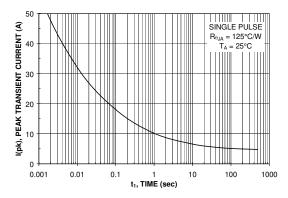


Figure 11. Single Pulse Maximum Peak Current.

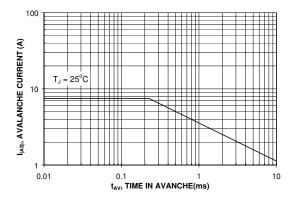


Figure 12. Unclamped Inductive Switching Capability.

Typical Characteristics

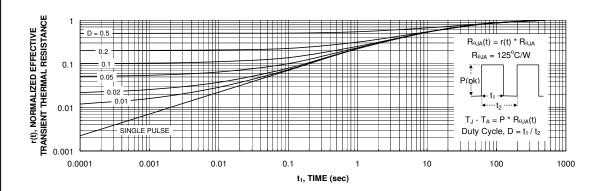


Figure 25. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative