MOSFET - Power, **N-Channel with ESD Protection, SOT-723** 20 V, 285 mA

Features

- Enables High Density PCB Manufacturing
- 44% Smaller Footprint than SC-89 and 38% Thinner than SC-89
- Low Voltage Drive Makes this Device Ideal for Portable Equipment
- Low Threshold Levels, $V_{GS(TH)} < 1.3 \text{ V}$
- Low Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics
- Operated at Standard Logic Level Gate Drive, Facilitating Future Migration to Lower Levels Using the Same Basic Topology
- These are Pb-Free and Halogen-Free Devices

Applications

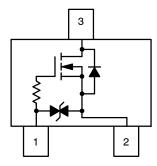
- Interfacing, Switching
- High Speed Switching
- Cellular Phones, PDAs

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage			V _{DSS}	20	V	
Gate-to-Source Voltag	Gate-to-Source Voltage			±10	V	
Continuous Drain	Steady	T _A = 25°C		255		
Current (Note 1)	State	T _A = 85°C	I _D	185	mA	
	t ≤ 5 s	T _A = 25°C		285		
Power Dissipation (Note 1)	Steady State		_	440		
(********)	t ≤ 5 s	$T_A = 25^{\circ}C$	P_{D}	545	mW	
	1 ≥ 3 5			545		
Continuous Drain Current (Note 2)		$T_A = 25^{\circ}C$	I _D	210	mA	
Current (Note 2)	Steady	T _A = 85°C		155	111/	
Power Dissipation (Note 2)	State	T _A = 25°C	P _D	310	mW	
Pulsed Drain Current	t _p = 10 μs		I _{DM}	400	mA	
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C	
Source Current (Body Diode) (Note 2)			IS	286	mA	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)			TL	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D Max
20 V	1.5 Ω @ 4.5 V	
	2.4 Ω @ 2.5 V	285 mA
	5.1 Ω @ 1.8 V	200 1117
	6.8 Ω @ 1.65 V	

Top View

- 1 Gate
- 2 Source
- 3 Drain

SOT-723 CASE 631AA STYLE 5

MARKING DIAGRAM

KA = Device Code = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTK3043NT1G	SOT-723*	4000 / Tape & Reel
NTK3043NT5G	SOT-723*	8000 / Tape & Reel

- †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
- *These packages are inherently Pb-Free.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	280	
Junction-to-Ambient - t = 5 s (Note 3)	$R_{\theta JA}$	228	°C/W
Junction-to-Ambient - Steady State Minimum Pad (Note 4)	$R_{ heta JA}$	400	

- 3. Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces)
- 4. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Condition		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$		V _{(BR)DSS}	20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 100 μA, Reference to 25°C		V _{(BR)DSS} /T _J		27		mV/°C
Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C	I _{DSS}			1	
		T _J = 125°C				10	μΑ
Gate-to-Source Leakage Current	V _{DS} = 0 V, V _{GS}	_S = ±5 V	I _{GSS}			1	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$		V _{GS(TH)}	0.4		1.3	V
Gate Threshold Temperature Coefficient			V _{GS(TH)} /T _J		-2.4		mV/°C
Drain-to-Source On Resistance	V _{GS} = 4.5V, I _D	= 10 mA	R _{DS(ON)}		1.5	3.4	
	V _{GS} = 4.5V, I _D =	= 255 mA	_		1.6	3.8	
	V _{GS} = 2.5 V, I _D = 1 mA		_		2.4	4.5	Ω
	V _{GS} = 1.8 V, I _D = 1 mA		_		5.1	10	
	V _{GS} = 1.65 V, I _D = 1 mA		_		6.8	15	
Forward Transconductance	V _{DS} = 5 V, I _D = 100 mA		9FS		0.275		S
Gate Resistance	T _A = 25°C		R _G		2.2		kΩ
CHARGES, CAPACITANCES AND GAT	E RESISTANCE		-		1		
Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 10 V		C _{ISS}		11		
Output Capacitance			C _{OSS}		8.3		pF
Reverse Transfer Capacitance			C _{RSS}		2.7		
SWITCHING CHARACTERISTICS, VGS	S= 4.5 V (Note 4)		-		1		
Turn-On Delay Time			t _{d(ON)}		13		
Rise Time	V _{GS} = 4.5 V, V _{DD} = 5	V. In = 10 mA.	t _r		15		
Turn-Off Delay Time	$R_{\rm G} = 6 \Omega$		t _{d(OFF)}		94		ns
Fall Time			t _f		55		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						•
Forward Diode Voltage	V 0.V.I 000 A	T _J = 25°C	V_{SD}		0.83	1.2	.,
	$V_{GS} = 0 \text{ V, } I_{S} = 286 \text{ mA}$ $T_{J} = 125$		_		0.69		_ V
Reverse Recovery Time	$V_{GS} = 0 \text{ V}, V_{DD} = 20 \text{ V}, \text{ dISD/dt} = 100 \text{ A/}\mu\text{s}, $ $I_{S} = 286 \text{ mA}$		t _{RR}		9.1		
Charge Time			t _a		7.1		ns
Discharge Time			t _b		2.0		1
Reverse Recovery Charge			Q _{RR}		3.7		nC

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%
- 6. Switching characteristics are independent of operating junction temperatures

TYPICAL PERFORMANCE CURVES

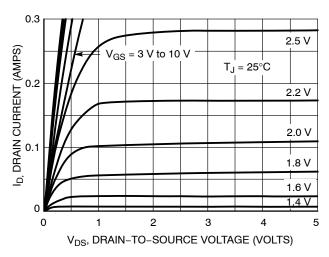


Figure 1. On-Region Characteristics

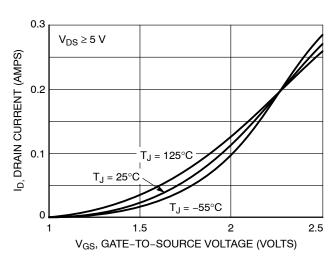


Figure 2. Transfer Characteristics

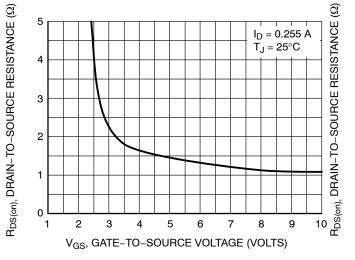


Figure 3. On-Resistance vs. Gate-to-Source Voltage

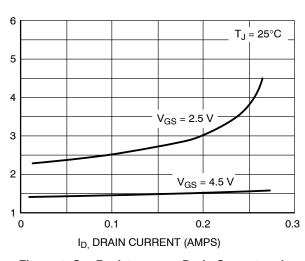


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

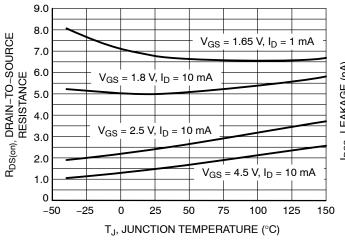


Figure 5. On–Resistance Variation with Temperature

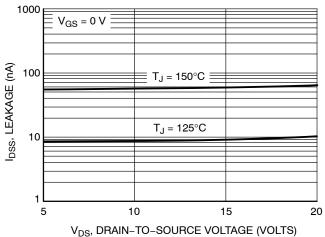
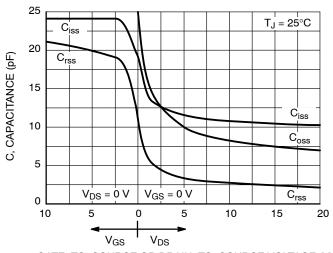



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

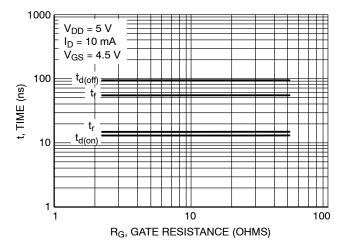


Figure 8. Resistive Switching Time Variation vs. Gate Resistance

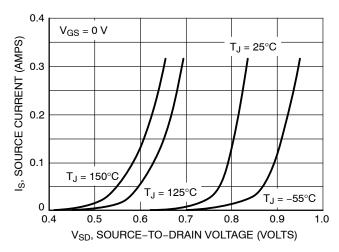
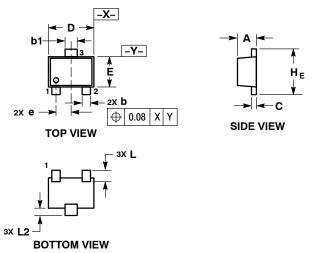
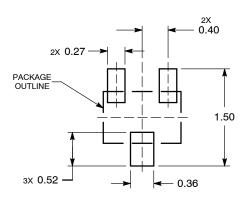



Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-723 CASE 631AA ISSUE D


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994
- T 14.3M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD
 FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM
- THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
Е	0.75	0.80	0.85	
е	0.40 BSC			
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

STYLE 5: PIN 1. GATE 2 SOURCE DRAIN

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. Coverage may be accessed at www.onsemi.com/site/par/-atent_-warking.pgr. On Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative