Advance Technical Information

GenX3[™] 1200V IGBT w/ Diode

IXGN82N120C3H1

High-Speed PT IGBT for 20-50 kHz Switching

Test Conditions

Symbol

Maximum Ratings

V _{CES}	=	1200V
C110	=	58A
V _{CE(sat)}	≤	3.9V

SOT-227B, miniBLOC **E15**3432

G = Gate, C = Collector, E = Emitter

① either emitter terminal can be used as

Main or Kelvin Emitter

Featu	res

- Optimized for Low Switching Losses
- Square RBSOA
- High Current Capability
- Isolation Voltage 2500 V~
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- SMPS
- PFC Circuits
- Welding Machines
- Lamp Ballasts

•				•
V _{CES}	$T_{_{\rm J}}$ = 25°C to 150°C		1200	V
V _{CGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GE}}$ = 1M Ω		1200	V
V _{GES}	Continuous		±20	V
V _{GEM}	Transient		±30	V
I _{C25}	T _C = 25°C		130	A
I _{C110}	$T_{c} = 110^{\circ}C$		58	Α
I _{F110}	$T_{c}^{\circ} = 110^{\circ}C$		42	Α
I _{CM}	$T_c = 25^{\circ}C$, 1ms		500	Α
SSOA	V _{GE} = 15V, T _{VJ} = 125°	$C, R_{G} = 3\Omega$	I _{CM} = 164	A
(RBSOA)	Clamped Inductive Load		$V_{CE} \leq V_{CES}$	
P _c	T _C = 25°C		595	W
T _J			-55 +150	°C
T_{JM}			150	°C
T _{stg}			-55 +150	°C
V _{ISOL}	50/60Hz	t = 1min	2500	V~
ISOL	$I_{ISOL} \le 1 mA$	t = 1s	3000	٧~
M _d	Mounting Torque		1.5/13	Nm/lb.in.
u	Terminal Connection	Torque	1.3/11.5	Nm/lb.in.
Weight			30	g

		Charac Min.	Characteristic Values Min. Typ. Max.		
V _{GE(th)}	$I_{\rm C}=1{\rm mA},V_{\rm CE}=V_{\rm GE}$	3.0		5.0	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V, \text{ Note 1}$ $T_{J} = 125^{\circ}\text{C}$				μA mA
I _{GES}	$V_{CE} = 0V, V_{GE} = \pm 20V$			±200	nA
V _{CE(sat)}	I _C = 82A, V _{GE} = 15V, Note 2		3.3	3.9	V

Symbol Test Conditions			Characteristic Values		
$(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min		Min.	Тур.	Max.	
g_{fs}	$I_{\rm C}=60$ A, $V_{\rm CE}=10$ V, Note 2	38	62	S	
C _{ies}			7900	pF	
C _{oes}	$V_{CE} = 25V, V_{GE} = 0V, f = 1 MHz$		685	pF	
C _{res}			197	pF	
Q _{g(on)}			340	nC	
\mathbf{Q}_{ge}	$I_{\rm C}=82{\rm A},V_{\rm GE}=15{\rm V},V_{\rm CE}=0.5\bullet V_{\rm CES}$		55	nC	
Q _{gc}			145	nC	
t _{d(on)}			30	ns	
t _{ri}	Inductive load, T _J = 25°C		77	ns	
E _{on}	$I_{\rm C}=82A,V_{\rm GE}=15V$		5.0	mJ	
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_{G} = 2\Omega$		194	ns	
t _{fi}	Note 3		100	ns	
E _{off}			2.5	5.0 mJ	
t _{d(on)}			32	ns	
t _{ri}	Inductive load, T _J = 125°C		80	ns	
E _{on}	$I_{\rm C} = 82A, V_{\rm GE} = 15V$		6.8	mJ	
t _{d(off)}	$V_{CE} = 0.5 \cdot V_{CES}, R_G = 2\Omega$		230	ns	
t _{fi}	Note 3		270	ns	
E _{off}			4.0	mJ	
R _{thJC}				0.21 °C/W	
R _{thCK}			0.05	°C/W	

.481

1.001 .084

.235 1.059

> .191 .987

.004

1.186 1.496 .460

> .496 .990 .078

.195

1.045

30.12 38.00 11.68 8.92

12.60 25.15 1.98

4.95

26.54 3.94

-0.05

9.60 0.84

26.90 4.42

4.85 25.07

Reverse Diode (FRED)

Symbol Test Conditions (T, = 25°C, Unless Otherwise Specified)			Characteristic Values Min. Typ. Max.			
V _E	$I_F = 60A$, $V_{GF} = 0V$, Note 1			.,,,,	2.5	
*F	F = 0071, V _{GE} = 0 V, 14010 1	$T_J = 150^{\circ}C$		1.4	1.8	V
I _{RM}	$\begin{cases} I_{F} = 60A, V_{GE} = 0V, \\ -di_{F}/dt = 200A/\mu s, V_{R} = 300V \end{cases}$	T _J = 100°C		8.3		Α
t _{rr}	\int -di _F /dt = 200A/µs, V _R = 300V			140		ns
R _{thJC}					0.42 °C	C/W

Notes:

- 1. Part must be heatsunk for high-temp Ices measurement.
- 2. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 3. Switching times & energy losses may increase for higher $V_{CF}(Clamp)$, T_{I} or R_{G} .

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

