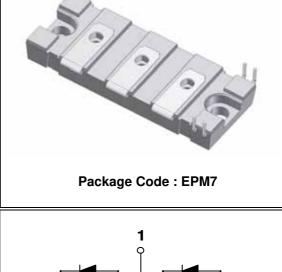
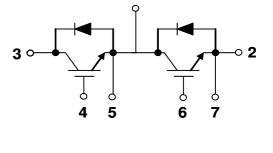


July 2008 Power-SPM[™]

FP7G50US60 Transfer Molded Type IGBT Module

General Description

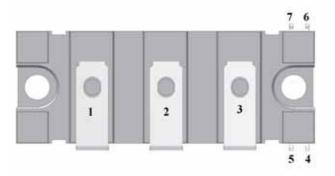

Fairchild's New IGBT Modules (Transfer Molded Type) provide low conduction and switching losses as well as short circuit ruggedness. They are designed for applications such as Motor control, Uninterrupted Power Supplies (UPS) and general Inverters where short circuit ruggedness is a required feature.


Features

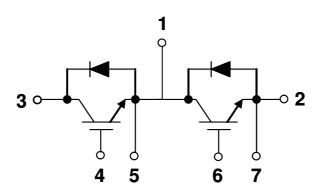
- Short Circuit rated 10us @Tc=100°C, Vge=15V
- High Speed Switching
- Low Saturation Voltage : Vce(sat) =2.2V @lc=50A
- High Input Impedance
- Fast & Soft Anti-Parallel FWD

Application

- Welders
- AC & DC Motor Controls
- General Purpose Inverters
- Robotics
- Servo Controls
- UPS



Internal Circuit Diagram


Absolute Maximum Ratings

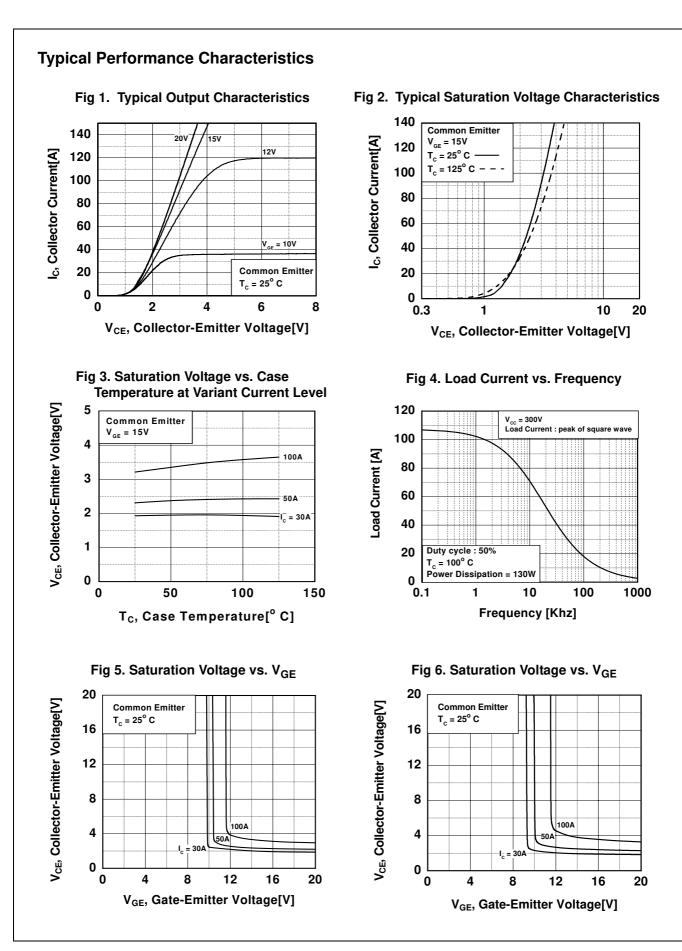
Symbol	Description		Rating	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
IC	Collector Current	@ T _C = 25°C	50	A	
I _{CM (1)}	Pulsed Collector Current		100	A	
I _F	Diode Continuous Forward Current	@ T _C = 100°C	50	A	
I _{FM}	Diode Maximum Forward Current	-	100	A	
T _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us	
PD	Maximum Power Dissipation	@ T _C = 25°C	250	W	
TJ	Operating Junction Temperature	-	-40 to +125	°C	
T _{stg}	Storage Temperature Range		-40 to +125	°C	
V _{iso}	Isolation Voltage	@ AC 1minute	2500	V	
Mounting	Power Terminals Screw : M5		2.0	N.m	
Torque	Mounting Screw : M5		2.0	N.m	

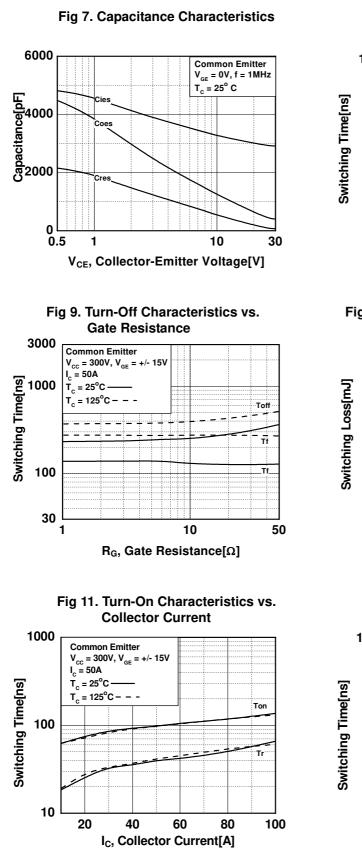
Pin Configuration and Pin Description

Top View

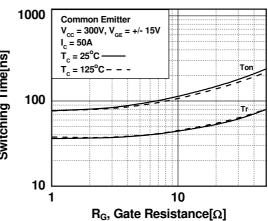
Internal Circuit Diagram

Pin Description

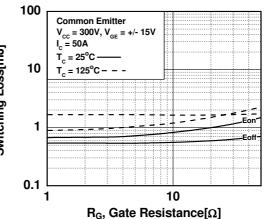

Pin Number	Pin Description
1	Emitter of Q1, IGBT, Collector of Q2, IGBT
2	Emitter of Q2, IGBT
3	Collector of Q1, IGBT
4	Gate of Q1, IGBT
5	Emitter of Q1, IGBT
6	Gate of Q2, IGBT
7	Emitter of Q2, IGBT

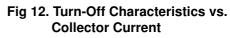

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250 \mu A$	600	-	-	V
$\Delta BV_{CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA	-	0.6	-	V
I _{CES}	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	uA
I _{GES}	Gate-Emitter Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	± 100	nA
On Char	acteristics					
V _{GE(th)}	G-E Threshold Voltage	$V_{GE} = 0V, I_C = 50mA$	5.0	6.0	8.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 50A, V _{GE} = 15V	-	2.2	2.8	V
Dvnamic	Characteristics					
C _{ies}	Input Capacitance			2920		pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		400		pF
C _{res}	Reverse Capacitance			75		pF
t _{d(on)} t _r	Turn-On Delay Time Rise Time	-	-	58 40	-	ns ns
	g Characteristics					
		$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 50\text{A},$ $R_{G} = 5.9\Omega, V_{GE} = 15\text{ V}$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	-	107	-	
t _{d(off)}	Turn-Off Delay Time Fall Time		-	140	-	ns
t _f E _{on}	Turn-On Switching Loss		-	0.75	-	ns mJ
E _{off}	Turn-Off Switching Loss	-	-	0.73	-	mJ
E _{ts}	Total Switching Loss	-	_	1.29	_	mJ
t _{d(on)}	Turn-On Delay Time		-	53	-	ns
t _r	Rise Time	-	-	40	-	ns
t _{d(off)}	Turn-Off Delay Time	-	-	106	-	ns
t _f	Fall Time	- V _{CC} = 300 V, I _C = 50A, R _G = 5.9Ω, V _{GE} = 15V	-	274	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, $T_C = 125^{\circ}C$	-	1.09	-	mJ
E _{off}	Turn-Off Switching Loss		-	1.68	-	mJ
E _{ts}	Total Switching Loss		-	2.77	-	mJ
T _{sc}	Short Circuit Withstand Time	V _{CC} = 300 V, V _{GE} = 15V @ T _C = 100°C	10	-	-	us
Qg	Total Gate Charge		-	136	-	nC
Q _{ge}	Gate-Emitter Charge	V _{CE} = 300 V, I _C = 50A, V _{GE} = 15V	-	26	-	nC
Q _{gc}	Gate-Collector Charge		1	76	1	nC

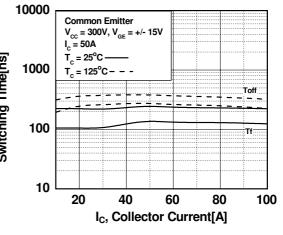
Symbol	Parameter	Con	ditions	Min	Тур	Max	Units
V _{FM} Diode Forward Voltage	5		$T_{C} = 25^{\circ}C$	-	- 1.9 2.8	2.8	v
	Diode Forward voltage	I _F = 50A	$T_{C} = 100^{\circ}C$	-	1.8	-	
Diada Davarra Daaavarra Tiraa			$T_{\rm C} = 25^{\circ}{\rm C}$	-	76	100	
t _{rr}	Diode Reverse Recovery Time	 I _F = 50A	$T_{C} = 100^{\circ}C$	-	138		ns
1	Diada Daali Davana Daaawan Oumant		$T_{C} = 25^{\circ}C$	-	4	5.2	
rr Diode Peak Reverse Recovery Curre		di / dt = 100 A/us	$T_{C} = 100^{\circ}C$	-	6		A
<u> </u>			$T_{C} = 25^{\circ}C$	-	152	260	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 100°C	-	404		nC


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)	-	0.4	°C/W
$R_{ ext{ heta}JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)	-	1.0	°C/W
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)	0.05	-	°C/W
Weight	Weight of Module	-	90	g






Fig 8. Turn-On Characteristics vs. Gate Resistance

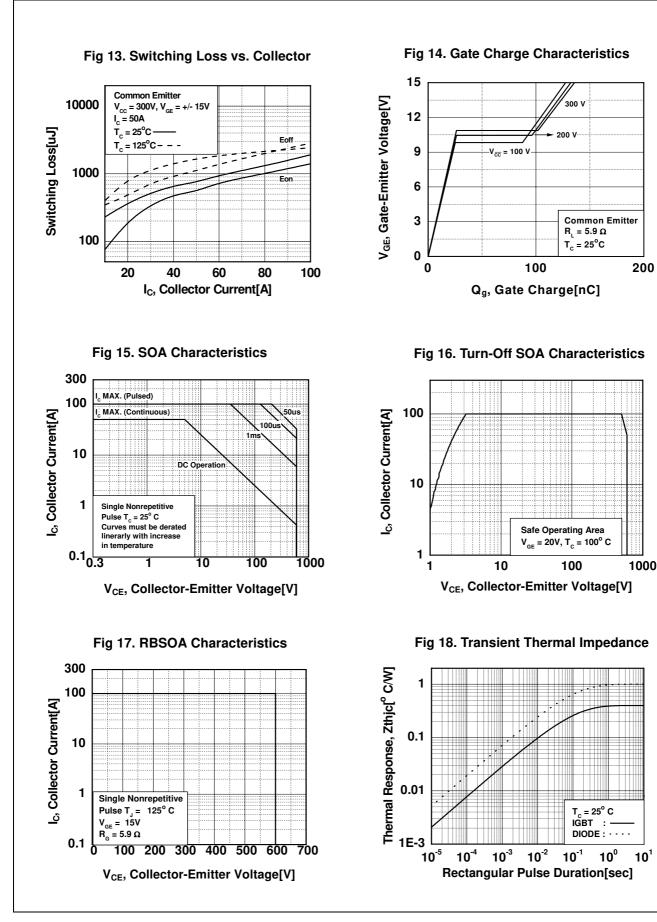
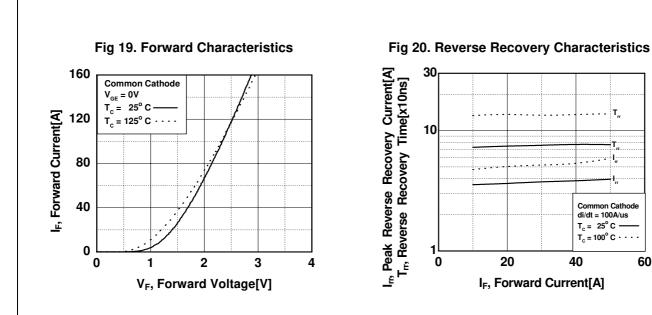


Fig 10. Switching Loss vs. Gate Resistance

Т,,,


I,

Common Cathode di/dt = 100A/us

60

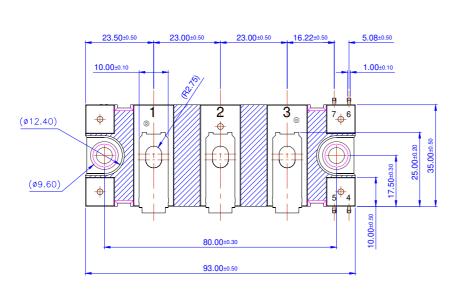
 $T_{c} = 25^{\circ} C T_c = 100^\circ C \cdot \cdot \cdot$

. . .

FP7G50US60 Rev. A

FP7G50US60 Transfer Molded Type IGBT Module 14.50^{+0.50} (5°) (R. 65) 9.60±0.10 12.20±0.30

18.40±0.50


 $0.80_{-0.05}^{+0.10}$

38.80±1.00

(14°) (14°)

(R1.00)

000

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now ™ CorePLUS ™ CorePOWER ™ CROSSVOLT™ CTL ™ CUrrent Transfer Logic ™ EcoSPARK® EfficentMax ™ EZSWITCH ™ EZSWITCH ™ Fairchild® Fairchild® Fairchild® Fairchild Semiconductor® FACT Quiet Series ™ FACT® FAST® FastvCore ™ FlashWriter® *	FPS™ F-PFS™ FRET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MiCroPat™ MiCroPat™ MiCroPat™ MiCroPat™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SMART START™ SPM® STEALTH™ SuperSOT™-6 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SuperMOS™ SyncFET™	The Power Franchise® the wer franchise TinyBoost™ TinyBuck™ TinyDouer™ TinyPower™ TinyPower™ TinyWire™ Wer Serces UHC® Ultra FRFET™ UniFET™ VGX™ VisualMax™
FlashWriter [®] *	U.		

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY AUXING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	•	Rev