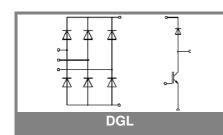


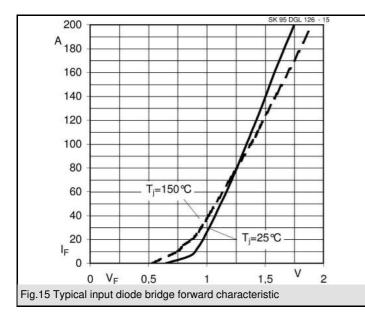
SEMITOP[®] 3

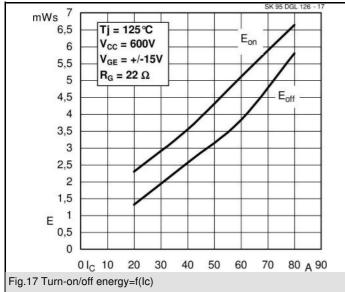
3-phase bridge rectifier + brake chopper

SK 95 DGL 126

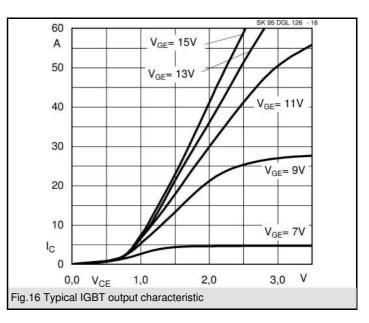
Features

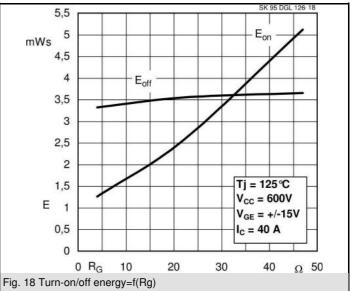

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench IGBT technology
- CAL Technology FWD

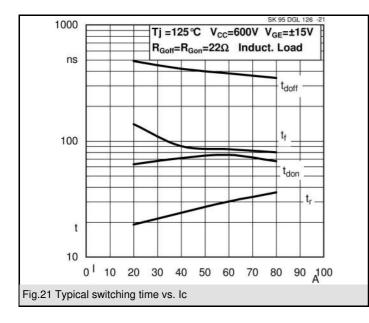

Typical Applications*

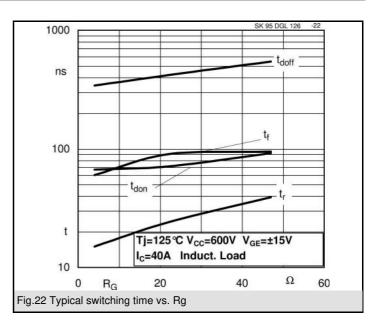

Rectifier

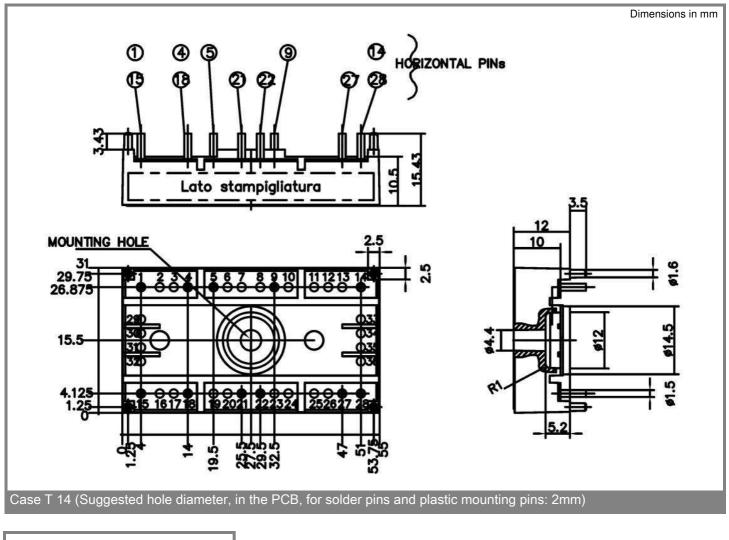
Symbol	Conditions	Values	Units
IGBT - Ch	opper		
V _{CES}		1200	V
I _C	T _s = 25 (80) °C	40 (32)	А
I _{CRM}	I_{CRM} = 2 x I_{Cnom} , t_p = 1 ms	70	А
V _{GES}		±20	V
Т _ј		-40 +150	°C
Diode - C	hopper	·	
I _F	T _s = 25 (80) °C	45 (35)	А
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	100	А
Т _ј		-40 +150	°C
Rectifier		· · ·	·
V _{RRM}		1600	V
I _D	T _s = 80 °C	96	А
I _{FSM} / I _{TSM}	t _p = 10 ms , sin 180 ° ,T _i = 25 °C	700	А
I ² t	t _p = 10 ms , sin 180 ° ,T _j = 25 °C	2450	A²s
T _j		-40 +150	°C
T _{sol}	Terminals, 10s	260	°C
T _{stg}		-40 +125	°C
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V

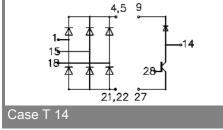

Characteristics		T _s = 25°C	T_s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Unit	
IGBT - C	hopper					
V _{CEsat}	I _C = 35 A, T _i = 25 (125) °C		1,7 (2)	2,1	V	
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1,5 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _i = 25 °C (125) °C		1 (0,9)	1,2	V	
r _T	T _j = 25 °C (125) °C		20 (31)	26	mΩ	
C _{ies}	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		2,4		nF	
C _{oes}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,5		nF	
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,4		nF	
R _{th(j-s)}	per IGBT			1,05	K/W	
t _{d(on)}	under following conditions		85		ns	
t _r	V_{CC} = 600 V, V_{GE} = ± 15 V		30		ns	
t _{d(off)}	I _C = 30 A, T _j = 125 °C		430		ns	
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		90		ns	
E _{on}	inductive load		4,6		mJ	
E _{off}			4,3		mJ	
Diode - C	Chopper					
V _F = V _{EC}	I _F = 45 A, T _i = 25(150) °C		1,5 (1,5)	1,77 (1,77)	V	
V _(TO)	$T_{i} = C (125) C$		(0,92)		V	
r _T	$T_{i} = C (125) C$		(13,4)		mΩ	
R _{th(j-s)}	per diode			1,2	K/W	
I _{RRM}	under following conditions		30		Α	
Q _{rr}	I _F = 50 A, V _R = 600 V		10		μC	
Err	V _{GE} = 0 V, T _i = 125 °C				mJ	
	di _{F/dt} = 500 A/µs					
Diode re	ctifier	•				
V _F	I _F = 35 A, T _i = 25(125) °C		-	1,2	V	
V _(TO)	T _i = 150 °C			0,8	V	
r _T	T _i = 150 °C			11	mΩ	
R _{th(j-s)}	per diode			1,2	K/W	
	tur sensor					
R _{ts}	%, T _r = () °C		()		Ω	
Mechani		I			1	
w			30		g	
	Mounting torque	1			1 -	











This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.