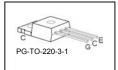


Soft Switching Series

Low Loss DuoPack : IGBT in **TrenchStop**[®] and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode

- Short circuit withstand time 10μs
- Designed for :
 - Soft Switching Applications
 - Induction Heating
- TrenchStop[®] and Fieldstop technology for 1200 V applications offers :
 - very tight parameter distribution
 - high ruggedness, temperature stable behavior
 - easy parallel switching capability due to positive
 - temperature coefficient in V_{CE(sat)}
 - Very low V_{ce(sat)}
- Very soft, fast recovery anti-parallel EmCon[™] HE diode
- Low EMI
- Qualified according to JEDEC¹ for target applications
- Application specific optimisation of inverse diode
- Pb-free lead plating; RoHS compliant

Туре	V _{CE}	I _c	V _{CE(sat), Tj=25°C}	T _{j,max}	Marking	Package
IHP10T120	1200V	10A	1.7V	150°C	H10T120	PG-TO-220-3-1


Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	1200	V
DC collector current	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 100^{\circ}{\rm C}$		16 10	
Pulsed collector current, t_p limited by T_{jmax}		24	
Turn off safe operating area $V_{CE} \le 1200V, T_j \le 150^{\circ}C$	/ _{Cpuls} -	24	
Diode forward current $T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 100^{\circ}{\rm C}$	/ _F	11 7	
Diode pulsed current, t_p limited by T_{jmax} , $T_c = 25^{\circ}C$	I _{Fpuls}	16.5	
Diode surge non repetitive current, t_p limited by T_{jmax}	I _{FSM}		А
$T_{\rm C}$ = 25°C, t _p = 10ms, sine halfwave		28	
$T_{\rm C}$ = 25°C, $t_{\rm p} \le 2.5 \mu s$, sine halfwave		50	
$T_{\rm C}$ = 100°C, t _p \leq 2.5µs, sine halfwave		40	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²⁾	t _{sc}	10	μS
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le$ 1200V, $T_{\rm j} \le$ 150°C			
Power dissipation, $T_{\rm C} = 25^{\circ}{\rm C}$	P _{tot}	138	W
Operating junction temperature	Tj	-40+150	°C
Storage temperature	T _{stg}	-55+150	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹ J-STD-020 and JESD-022

²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.9	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		2.6	
junction – case				
IGBT thermal resistance,	R _{thJA}		62	
junction – ambient				

Electrical Characteristic, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
Parameter	Symbol		min.	typ.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	V_{GE} =0V, I_{C} =0.5mA	1200	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =10A				
		<i>T</i> _j =25°C	-	1.7	2.2	
		<i>T</i> _j =125°C	-	2.0	-	
		<i>T</i> _j =150°C	-	2.2	-	
Diode forward voltage	V _F	V_{GE} =0V, I_{F} =4A				
		<i>T</i> _j =25°C	-	1.65	2.15	
		<i>T</i> _j =150°C	-	1.7	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}$ =0.6mA, $V_{\rm CE}$ = $V_{\rm GE}$	5.0	5.8	6.5	
Zero gate voltage collector current	I _{CES}	V _{CE} =1200V, V _{GE} =0V				mA
		<i>T</i> _j =25°C	-	-	0.2	
		<i>T</i> _j =150°C	-	-	2.0	
Gate-emitter leakage current	I _{GES}	$V_{CE} = 0V, V_{GE} = 20V$	-	-	100	nA
Transconductance	$m{g}_{fs}$	V _{CE} =20V, <i>I</i> _C =10A	-	10	-	S
Integrated gate resistor	R _{Gint}			none		Ω

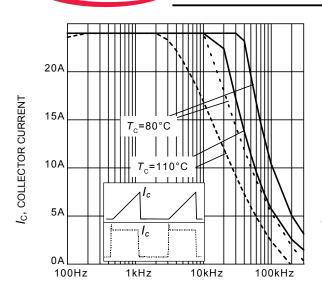
Dynamic Characteristic

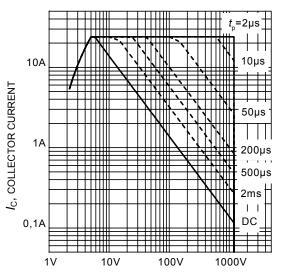
Input capacitance	Ciss	V _{CE} =25V,	-	606	-	pF
Output capacitance	Coss	V _{GE} =0V,	-	48	-	
Reverse transfer capacitance	Crss	f=1MHz	-	29	-	
Gate charge	Q _{Gate}	V _{CC} =960V, <i>I</i> _C =10A	-	53	-	nC
		V _{GE} =15V				
Internal emitter inductance	L _E		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤10µs V_{CC} = 600V, T_{j} = 25°C	-	48	-	A

Switching Characteristic, Inductive Load, at T_j =25 °C

Deveneter	Symphol	Conditions	Value			11	
Parameter	Symbol Conditions		min.	typ.	max.	Unit	
IGBT Characteristic							
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	45	-	ns	
Rise time	t _r	$V_{\rm CC}$ =610V, $I_{\rm C}$ =10A,	-	20	-		
Turn-off delay time	$t_{d(off)}$	V _{GE} = 0/15V, R _G =81Ω,	-	520	-		
Fall time	t _f	$L_{\sigma}^{(2)} = 180 \text{ nH},$	-	82	-		
Turn-on energy	Eon	$C_{\sigma}^{(2)}$ =39pF	-	0.68	-	mJ	
Turn-off energy	E _{off}	Energy losses include "tail" and diode	-	0.78	-		
Total switching energy	Ets	reverse recovery.	-	1.46	-		
Anti-Parallel Diode Characteristic							
Diode reverse recovery time	t _{rr}	<i>T</i> _j =25°C,	-	115	-	ns	
Diode reverse recovery charge	Q _{rr}	V _R =800V, <i>I</i> _F =4A,	-	330		nC	
Diode peak reverse recovery current	I _{rrm}	di _F /dt=750A/µs	-	7.15		А	

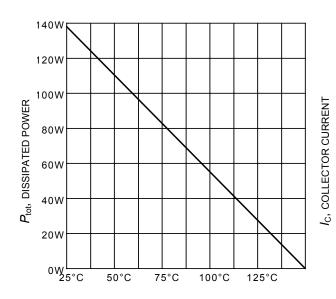
¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s. ²⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

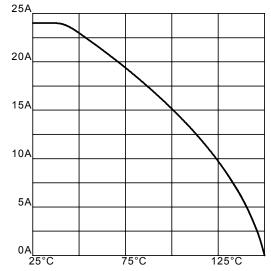

Switching Characteristic, Inductive Load, at T_i =150 °C


Poromotor	Symbol	Conditions	Value			Unit	
Parameter	Symbol Conditions		min.	typ.	max.		
IGBT Characteristic							
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =150°C,	-	45	-	ns	
Rise time	t _r	V_{CC} =610V, I_{C} =10A, V_{GE} = 0 /15V,	-	24	-		
Turn-off delay time	$t_{d(off)}$	$R_{\rm GE} = 0715V,$ $R_{\rm G} = 81\Omega$	-	592	-		
Fall time	t _f	$L_{\sigma}^{(1)} = 180 \text{ nH},$	-	177	-		
Turn-on energy	Eon	$C_{\sigma}^{(1)}$ =39pF	-	0.83	-	mJ	
Turn-off energy	E _{off}	Energy losses include "tail" and diode	-	1.19	-		
Total switching energy	E _{ts}	reverse recovery.	-	2.02	-		
Anti-Parallel Diode Characteristic							
Diode reverse recovery time	t _{rr}	<i>T</i> _j =150°C	-	185	-	ns	
Diode reverse recovery charge Q _{rr}		V _R =800V, <i>I</i> _F =4A,	-	630	-	nC	
Diode peak reverse recovery current	I _{rrm}	di _F /dt=750A/µs	-	8.1	-	А	

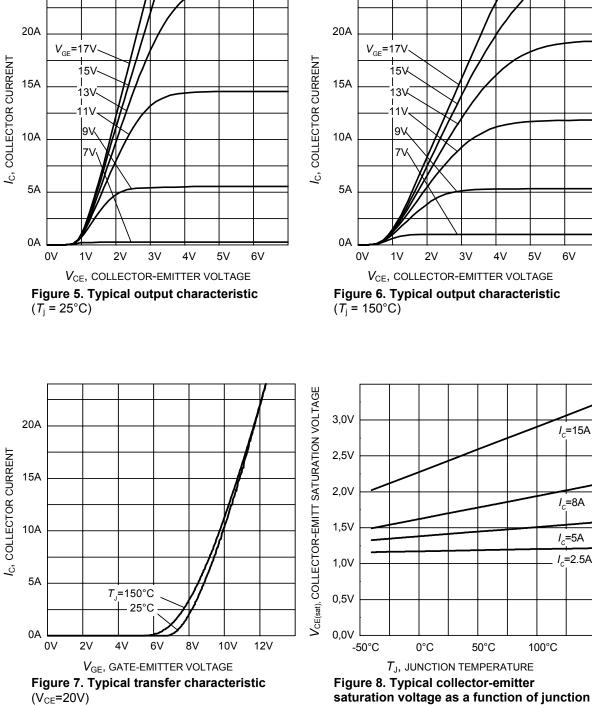
 $^{^{1)}}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to dynamic test circuit in Figure E.

Soft Switching Series




 $(T_j \le 150^{\circ}\text{C}, D = 0.5, V_{\text{CE}} = 600\text{V}, V_{\text{GE}} = 0/+15\text{V}, R_{\text{G}} = 81\Omega)$

 $(D = 0, T_{\rm C} = 25^{\circ}{\rm C}, T_{\rm i} \le 150^{\circ}{\rm C}; V_{\rm GE} = 15{\rm V})$



 $\label{eq:tau} \begin{array}{l} {\cal T}_{C}, \mbox{ CASE TEMPERATURE} \\ \mbox{Figure 3. Power dissipation as a function} \\ \mbox{ of case temperature} \\ ({\cal T}_{i} \leq 150^{\circ}C) \end{array}$

 $\label{eq:tau} T_{C}, \mbox{ CASE TEMPERATURE} \\ \mbox{Figure 4. Collector current as a function of } \\ \mbox{ case temperature} \\ (V_{GE} \geq 15V, \ T_{j} \leq 150^{\circ}C) \\ \end{cases}$

saturation voltage as a function of junction temperature

 $(V_{\rm GE} = 15V)$

Soft Switching Series

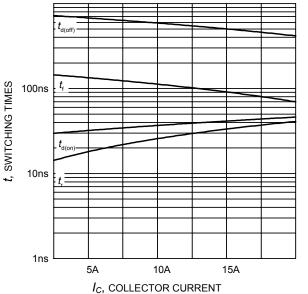
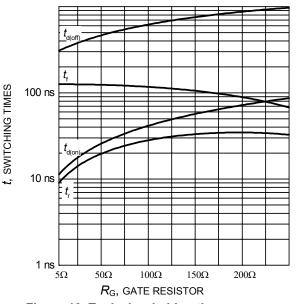
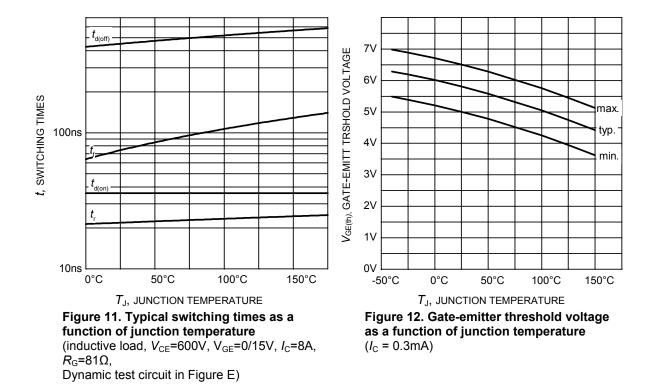




Figure 9. Typical switching times as a function of collector current (inductive load, T_J =150°C, V_{CE} =600V, V_{GE} =0/15V, R_G =81 Ω , Dynamic test circuit in Figure E)

IHP10T120

Figure 10. Typical switching times as a function of gate resistor (inductive load, T_J =150°C, V_{CE} =600V, V_{GE} =0/15V, I_C =8A,

Soft Switching Series

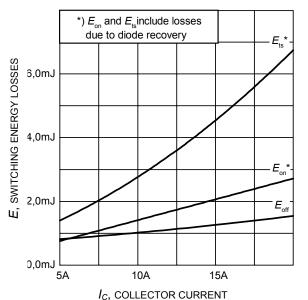


Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_J =150°C, V_{CE} =600V, V_{GE} =0/15V, R_G =81 Ω , Dynamic test circuit in Figure E)

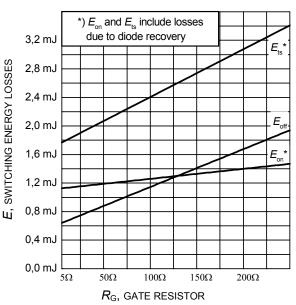


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T_J =150°C, V_{CE} =600V, V_{GE} =0/15V, I_C =8A, Dynamic test circuit in Figure E)

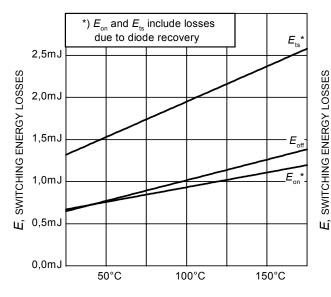
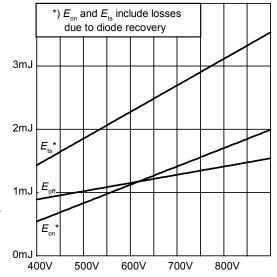



Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V_{CE} =600V, V_{GE} =0/15V, I_{C} =8A, R_{G} =81 Ω , Dynamic test circuit in Figure E)

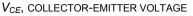


Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, T_J =150°C, V_{GE} =0/15V, I_C =8A, R_G =81Ω, Dynamic test circuit in Figure F)

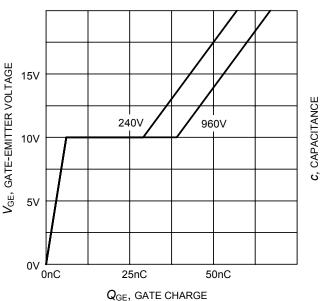
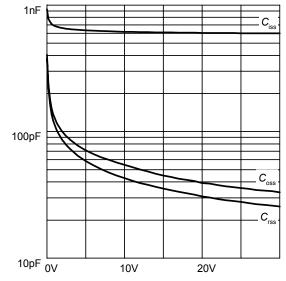
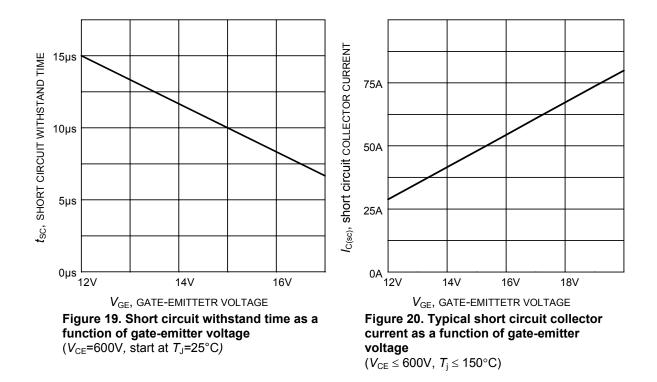
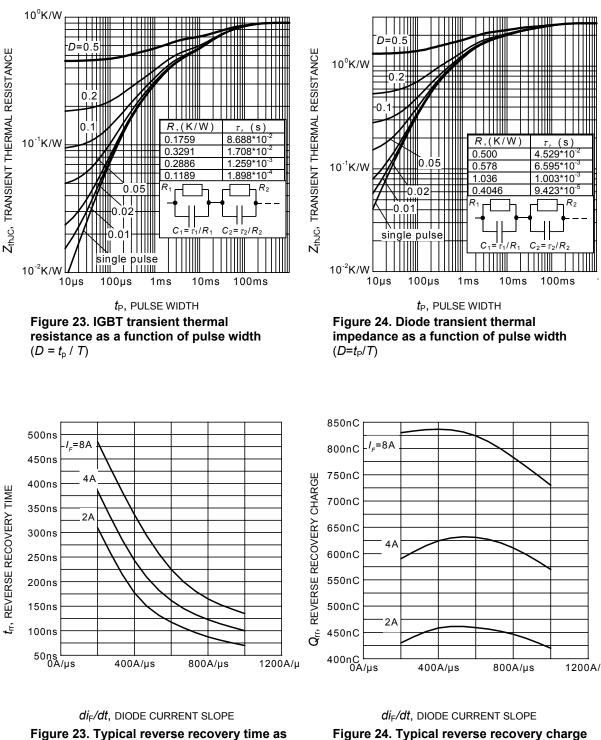
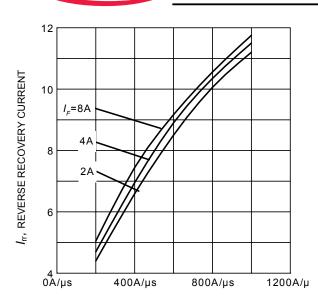




Figure 17. Typical gate charge $(I_c=8 \text{ A})$

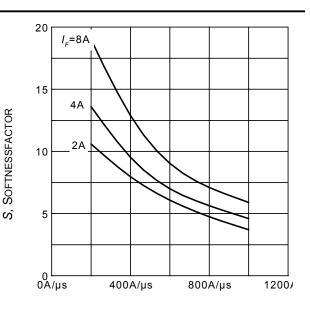
 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a

function of collector-emitter voltage $(V_{GE}=0V, f=1 \text{ MHz})$




Figure 24. Typical reverse recovery charge as a function of diode current slope $(V_R=800V, T_J = 125^{\circ}C,$ Dynamic test circuit in Figure E)

(V_R=600V, I_F=8A,


a function of diode current slope

Soft Switching Series

 $di_{\rm F}/dt$, DIODE CURRENT SLOPE **Figure 25. Typical reverse recovery current as a function of diode current slope** ($V_{\rm R}$ =800V, $T_{\rm J}$ = 125°C, Dynamic test circuit in Figure E)

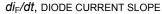
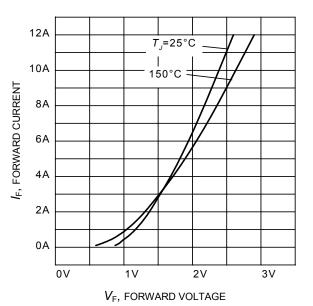
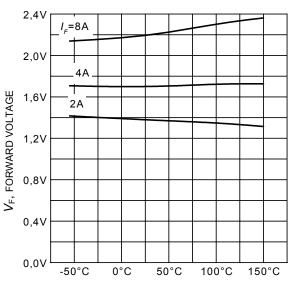
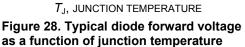
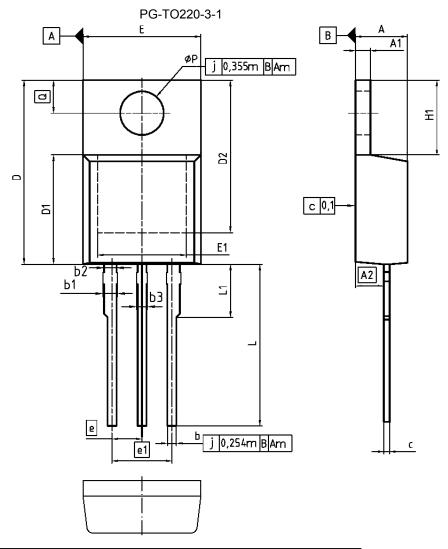
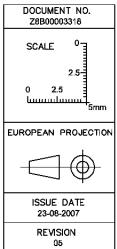
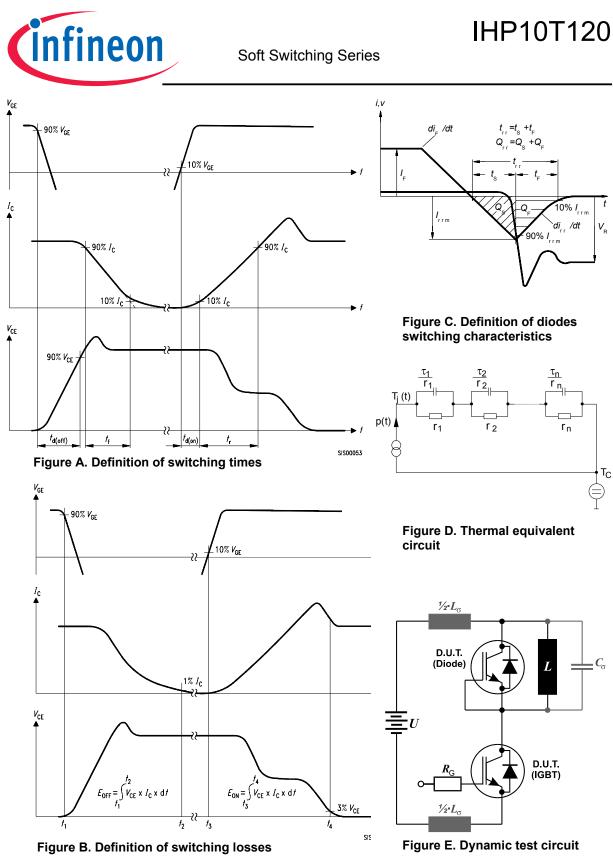


Figure 26. Typical reverse recovery softness factor as a function of diode current slope $(V_R=800V, T_J = 125^{\circ}C,$


Figure 27. Typical diode forward current as a function of forward voltage





DIM	MILLIM	ETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.30	4.57	0.169	0.180		
A1	1.17	1.40	0.046	0.055		
A2	2.15	2.72	0.085	0.107		
Ь	0.65	0.86	0.026	0.034		
b1	0.95	1.40	0.037	0.055		
b2	0.95	1.15	0.037	0.045		
b3	0.65	1.15	0.026	0.045		
C	0.33	0.60	0.013	0.024		
D	14.81	15.95	0.583	0.628		
D1	8.51	9.45	0.335	0.372		
D2	12.19	13.10	0.480	0.516		
E	9.70	10.36	0.382	0.408		
E1	6.50	8.60	0.256	0.339		
е	2.5	i4	0.100			
e1	5.0	8	0.200			
N		3	:	3		
H1	5.90	6.90	0.232	0.272		
L	13.00	14.00	0.512	0.551		
L1	-	4.80	-	0.189		
øP	3.60	3.89	0.142	0.153		
Q	2.60	3.00	0.102	0.118		

Leakage inductance L_{σ} =180nH and Stray capacity C_{σ} =39pF.

Edition 2006-01

Published by Infineon Technologies AG 81726 München, Germany

© Infineon Technologies AG 11/24/09. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (**www.infineon.com**).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.