

INSULATED GATE BIPOLAR TRANSISTOR

$$V_{CES} = 1200V$$

$$I_{C(Nominal)} = 10A$$

$$T_{J(max)} = 175^{\circ}C$$

$$V_{CE(on)} typ = 2.15V @ I_{C} = 10A$$

n-channel

Ε

Industrial Motor Drives G С **UPS** Gate Collector Emitter

Applications

- **HEV Inverter**
- Welding

Features	—→ Benefits
Low V _{CE(on)} Trench IGBT Technology	High Efficiency in a Wide Range of Applications
Low Switching Losses	Suitable for a Wide Range of Switching Frequencies
10μs Short Circuit SOA Square RBSOA	Rugged Transient Performance for Increased Reliability
Tight Parameter Distribution Positive V _{CE(on)} Temperature Coefficient	Excellent Current Sharing in Parallel Operation
Tj(max) = 175°C	Increased Reliability

Base part number	Package Type	Standard Pack		Orderable part number
		Form	Quantity	
IRG7CH30K10EF	Die on Film	Wafer	1	IRG7CH30K10EF

Mechanical Parameter

Die Size	3.43 x 4.19	mm ²		
Minimum Street Width	75	μm		
Emiter Pad Size (Included Gate Pad)	See Die Drawing			
Gate Pad Size	0.44 x 0.38	mm ²		
Area Total / Active	14.37/6.48	7		
Thickness	140	μm		
Wafer Size	200	mm		
Notch Position	0	Degrees		
Maximum-Possible Chips per Wafer	1922 pcs.			
Passivation Front side	Silicon Nitride			
Front Metal	Al, Si (4µm)			
Backside Metal	AI, Ti, Ni, Ag (1kA°-1kA°-4kA°-6kA°)			
Die Bond	Electrically conductive epoxy or solder			
Reject Ink Dot Size	0.25 mm diameter minimum			

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	1200	V
I _C	DC Collector Current	①	А
I _{LM}	Clamped Inductive Load Current ②	40	А
V_{GE}	Gate Emitter Voltage	± 30	V
T_{J}, T_{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) @ T_J=25°C

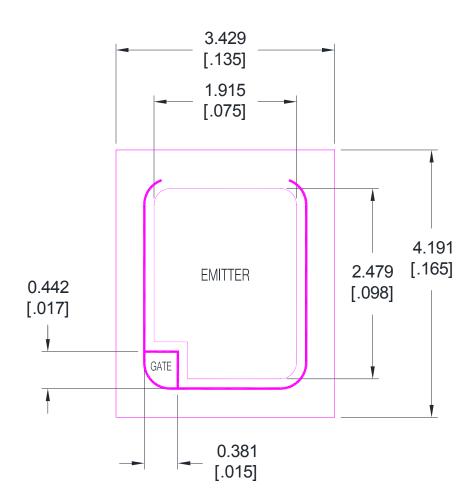
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	V _{GE} = 0V, I _C = 250μA ③
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.8	2.2		$V_{GE} = 15V, I_{C} = 5A, T_{J} = 25^{\circ}C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	5.0		7.5		$I_C = 400 \mu A$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 100	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$

Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		2.15	2.56	V	V _{GE} = 15V, I _C = 10A , T _J = 25°C ④	
			3.05			V _{GE} = 15V, I _C = 10A , T _J = 175°C4	
SCSOA	Short Circuit Safe Operating Area	10				V _{GE} =15V, V _{CC} =600V	
						V _P ≤1200V,T _J =150°C	
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE		FULL SQUARE			$T_J = 150^{\circ}C, I_C = 40A$
					V _{CC} = 960V, Vp ≤1200V		
						V_{GE} = +20V to 0V	
C _{iss}	Input Capacitance		1060		pF	V _{GE} = 0V	
Coss	Output Capacitance		45			V _{CE} = 30V	
C_{rss}	Reverse Transfer Capacitance		30			f = 1.0MHz	
Q_g	Total Gate Charge (turn-on)	_	4.8	_	nC	I _C = 10A ④	
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	1.2			V _{GE} = 15V	
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	2.4	_		V _{CC} = 600V	

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `					<u> </u>
	Parameter	Min.	Тур.	Max.	Units	Conditions ®
$t_{d(on)}$	Turn-On delay time		10	_		$I_{\rm C}$ = 10A, $V_{\rm CC}$ = 600V
t _r	Rise time	_	35	_		$R_G = 22\Omega$, $V_{GE}=15V$
$t_{d(off)}$	Turn-Off delay time	_	90	_		$T_J = 25^{\circ}C$
t _f	Fall time	_	120	_		
t _{d(on)}	Turn-On delay time	_	7.5	_	ns	I _C = 10A, V _{CC} = 600V
t _r	Rise time	_	31	_		I_{C} = 10A, V_{CC} = 600V R_{G} = 22 Ω , V_{GE} =15V
$t_{d(off)}$	Turn-Off delay time	_	140	_		T _J = 150°C
t _f	Fall time	_	171	_		


Notes:

- $\, \odot \,$ The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② $V_{CC} = 80\% (V_{CES}), V_{GE} = 20V.$
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- S Values influenced by parasitic L and C in measurement.

www.irf.com © 2013 International Rectifier July 12, 2013

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WITDH AND LENGTH TOLERANCE: + 0, -0.0508 [+ 0, -.002]
- 4. DIE THICKNESS = 0.140 [.0055]

REFERENCE: IRG7PH30K10PBF

IRG7CH30K10B IRG7PH30K10DPBF

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/