IGBT - Field Stop, Trench

650 V, 75 A

Product Preview

FGH75T65SHDTLN4

Using the novel field stop 3rd generation IGBT technology, FGH75T65SHDTLN4 offers the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction loss and switching loss are essential.

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.6 \text{ V (Typ.)}$ @ $I_C = 75 \text{ A}$
- 100% of the Parts Tested for I_{LM}(1)
- High Input Impedance
- Fast Switching
- Tight Parameter Distribution
- Pb Free and RoHS Compliant
- Not Recommended for Reflow and Full PKG Dipping

Typical Applications

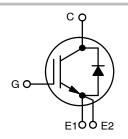
- Solar Inverter UPS Welder
- Telecom ESS PFC

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Collector-to-Emitter Voltage		V_{CES}	650	V
Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage	V _{GES}	±20 ±30	V	
Collector Current	T _C = 25°C	I _C	150	Α
	T _C = 100°C		75	
Pulsed Collector Current (Note 1)	I _{LM}	300	Α	
Pulsed Collector Maximum Curren	I _{CM}	300	Α	
Diode Forward Current	de Forward Current $T_C = 25^{\circ}C$		125	Α
	T _C = 100°C		75	
Pulsed Diode Maximum Forward Cu	irrent (Note 2)	I _{FM}	300	Α
Maximum Power Dissipation $T_C = 25^{\circ}C$		P_{D}	455	W
		227		
Operating Junction and Storage Te Range	T _J , T _{STG}	-55 to +175	°C	
Maximum Lead Temperature for So Purposes (1/8" from case for 5 sec	T _L	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 300 A, R_{G} = 73 Ω , Inductive Load
- 2. Repetitive rating: pulse width limited by max. Junction temperature


This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.



ON Semiconductor®

www.onsemi.com

75 A, 650 V V_{CE(sat)} = 1.6 V E_{on} = 1.06 mJ

TO-247 THIN LEADS CASE 340CW

DEVICE MARKING INFORMATION

Line 1: Date Code Line 2: Device Marking Line 3: Device Marking

ORDERING INFORMATION

Device	Package	Shipping
FGH75T65SHDTLN4	TO-247	30 Units / Tube

Table 1. THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction to Case, for IGBT	0.33	°C/W
$R_{ hetaJC}$	Thermal Resistance, Junction to Case, for Diode	0.65	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	40	°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	<u> </u>					
Collector-emitter breakdown voltage, gate-emitter short-circuited	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	650	_	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_CES / \Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	-	0.65	-	V/°C
Collector-emitter cut-off current, gate-emitter short-circuited	I _{CES}	V_{GE} = 0 V, V_{CE} = 650 V	-	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	I _{GES}	V_{GE} = ±20 V, V_{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS			•	•		•
Gate-emitter threshold voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 75 \text{ mA}$	4.0	5.5	7.5	V
Collector-emitter saturation voltage	V _{CE(sat)}	V_{GE} = 15 V, I_{C} = 75 A, V_{GE} = 15 V, I_{C} = 75 A, T_{J} = 175°C	_ _	1.6 2.28	2.1 -	mV/°C
DYNAMIC CHARACTERISTICS	•		•	•		•
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	_	3710	-	pF
Output Capacitance	C _{oes}		_	183	_	
Reverse Transfer Capacitance	C _{res}		_	43	-	
Gate Charge Total	Qg	V _{CE} = 400 V, I _C = 75 A, V _{GE} = 15 V	_	126	_	nC
Gate-to-Emitter Charge	Q _{ge}		_	24.1	-	
Gate-to-Collector Charge	Q _{gc}		_	47.6	-	
SWITCHING CHARACTERISTICS, INDU	JCTIVE LOAD			-		
Turn-On Delay Time	t _{d(on)}	T _C = 25°C	_	55	-	ns
Rise Time	t _r	$V_{CC} = 400 \text{ V}, I_{C} = 75 \text{ A}$ $Rg = 15 \Omega$	-	50	-	
Turn-Off Delay Time	t _{d(off)}	$V_{GE} = 15 \text{ V}$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	_	189	-	
Fall Time	t _f		_	39	-	
Turn-On Switching Loss	E _{on}		_	1.06	-	mJ
Turn-Off Switching Loss	E _{off}		_	1.56	-	
Total Switching Loss	E _{ts}		-	2.62	-	
Turn-On Delay Time	t _{d(on)}	V _{CC} = 400 V, I _C = 75 A	-	48	-	ns
Rise Time	t _r	Rg = 15 Ω V _{GE} = 15 V	-	56	-	
Turn-Off Delay Time	t _{d(off)}	Inductive Load, T _C = 175°C	-	205	-	
Fall Time	t _f		_	40	-	
Turn-On Switching Loss	E _{on}		-	2.34	-	mJ
Turn-Off Switching Loss	E _{off}		-	1.81	-	
Total Switching Loss	E _{ts}		-	4.15	-	
DIODE CHARACTERISTICS						
Forward voltage	V_{F}	I _F = 75 A I _F = 75 A, T _J = 175°C	-	1.8 1.7	2.1 -	V
				•		

Table 2. ELECTRICAL CHARACTERISTICS (T, I = 25°C unless otherwise noted)

Table 2. ELECTHOAL CHARACTERIOTICS (1) = 23 O unless officially						
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DIODE CHARACTERISTICS						
Reverse Recovery Time	t _{rr}	T _J = 25°C I _F = 75 A, di _F /dt = 200 A/μs	-	36	_	ns
Reverse Recovery Charge	Q _{rr}	I _F = 75 A, dI _F /dt = 200 A/μs	-	18	-	
Reverse Recovery Time	t _{rr}	$T_J = 175^{\circ}C$ $I_F = 75 \text{ A, di}_F/dt = 200 \text{ A}/\mu\text{s}$	-	270	-	ns
Reverse Recovery Charge	Q _{rr}	i _F = 75 A, αi _F /αt = 200 A/μs	-	2199	_	μC
Reverse Recovery Energy	E _{rec}		-	160	_	μJ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

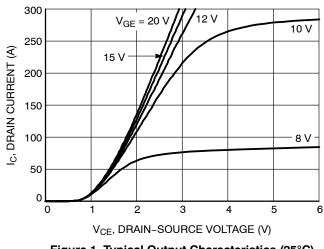


Figure 1. Typical Output Characteristics (25°C)

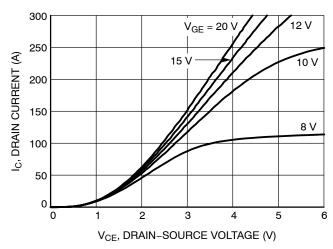


Figure 2. Typical Output Characteristics (175°C)

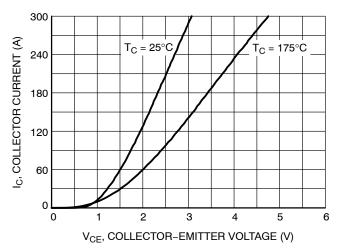


Figure 3. Typical Saturation Voltage Characteristics

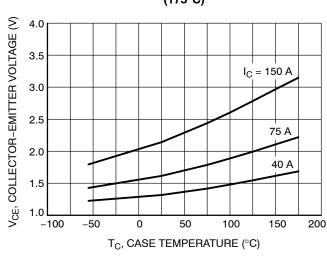


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

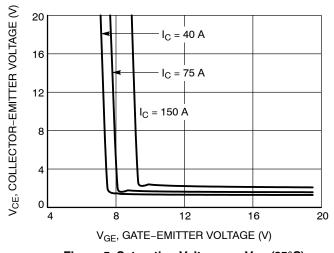


Figure 5. Saturation Voltage vs. V_{GE} (25°C)

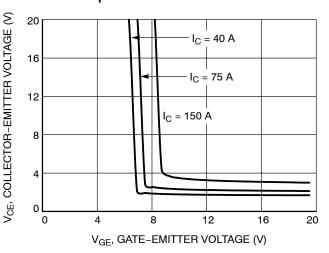


Figure 6. Saturation Voltage vs. V_{GE} (175°C)

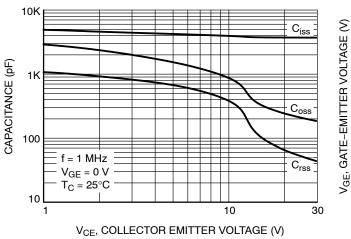


Figure 7. Capacitance Characteristics

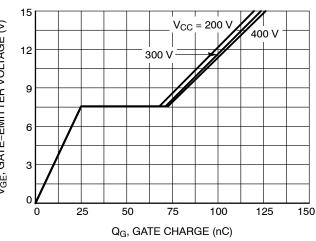


Figure 8. Gate Charge Characteristics

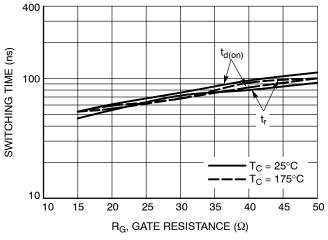


Figure 9. Turn-On Characteristics vs. Gate Resistance

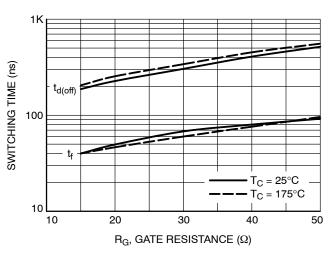


Figure 10. Turn-Off Characteristics vs. Gate Resistance

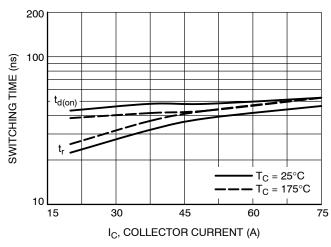


Figure 11. Turn-On Characteristics vs.
Collector Current

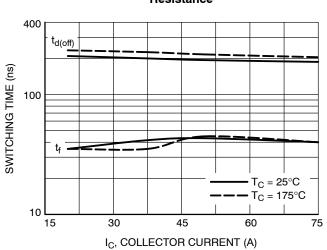


Figure 12. Turn-Off Characteristics vs.
Collector Current

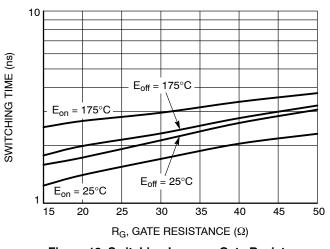


Figure 13. Switching Loss vs. Gate Resistance

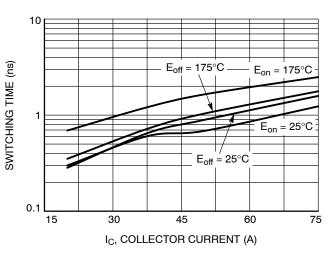


Figure 14. Switching Loss vs. Collector Current

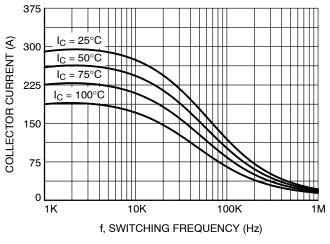


Figure 15. Load Frequency Template

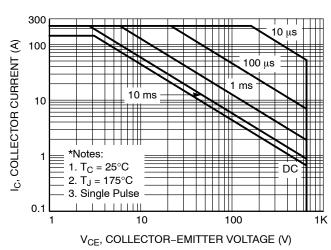


Figure 16. SOA Characteristics

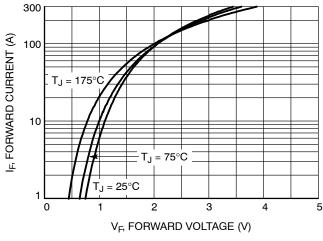
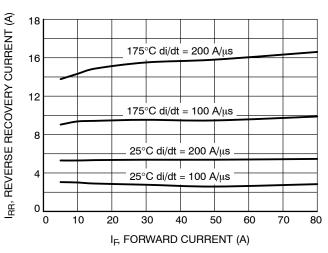



Figure 17. Forward Characteristics

Figure 18. Reverse Recovery Current

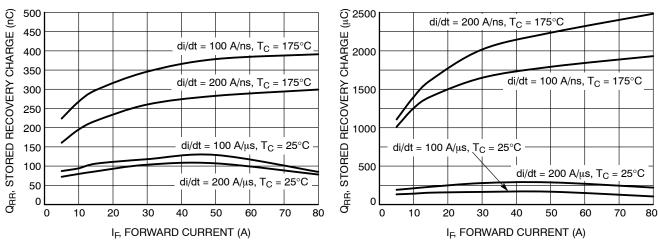


Figure 19. Reverse Recovery Time

Figure 20. Stored Charge

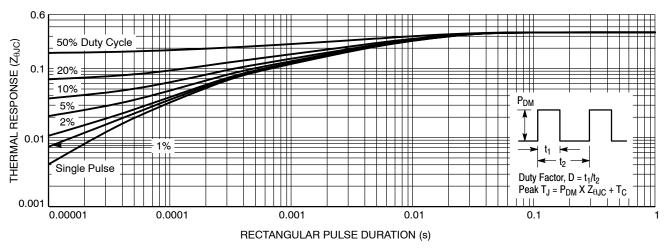


Figure 21. Transient Thermal Impedance of IGBT

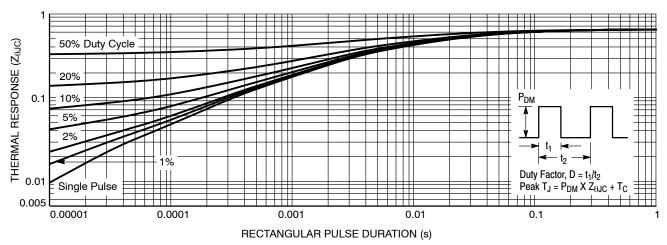
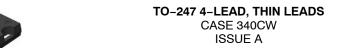
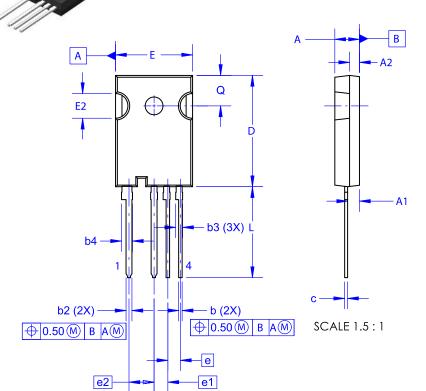
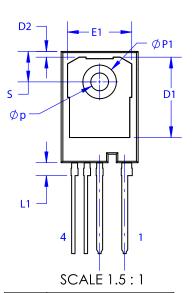




Figure 22. Transient Thermal Impedance of Diode


DATE 16 SEP 2019

SCALE 1.5:1

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.

DIM	MILLIMETERS				
ואוט	MIN	NOM	MAX		
Α	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	0.57	0.70	0.83		
b2	1.07	1.20	1.33		
b3	1.20	1.40	1.60		
b4	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.30	16.50		
D2	0.97	1.17	1.37		
е		2.54			
e1		2.79			
e2		5.08			
Е	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E2	4.80	5.00	5.20		
_	18.12	18.42	18.72		
L1	2.42	2.62	2.82		
Øр	3.40	3.60	3.80		
ØP1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

DOCUMENT NUMBER:	98AON80893G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247 4-LEAD, THIN LEA	ADS	PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

ort: Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative