

ON Semiconductor®

J109 / MMBFJ108 N-Channel Switch

Features

- This device is designed for digital switching applications where very low on resistance is mandatory.
- Sourced from process 58

Ordering Information

Figure 1. J109 Device Package

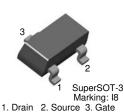


Figure 2. MMBFJ108 Device Package

Part Number	Top Mark	Package	Packing Method
J109	J109	TO-92 3L	Bulk
J109-D26Z	J109	TO-92 3L	Tape and Reel
MMBFJ108	18	SSOT 3L	Tape and Reel

Absolute Maximum Ratings^{(1), (2)}

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or lowduty-cycle operations.

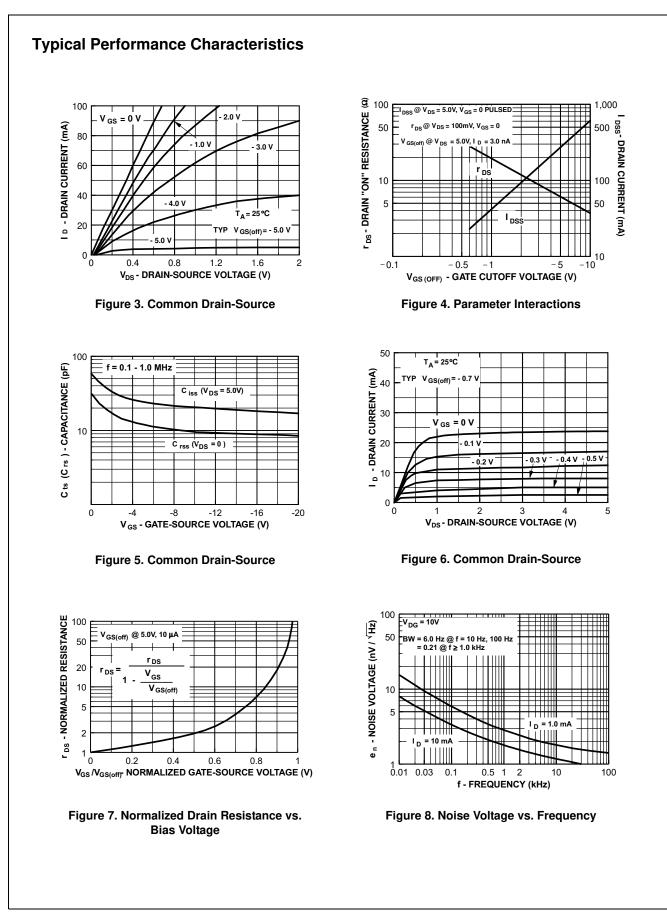
Thermal Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Ma	Unit		
Symbol		J109 ⁽³⁾	MMBFJ108 ⁽⁴⁾	Unit	
PD	Total Device Dissipation	625	350	mW	
	Derate Above 25°C	5.0	2.8	mW/°C	
R _{0JC}	Thermal Resistance, Junction-to-Case	125		°C/W	
R _{0JA}	Thermal Resistance, Junction-to-Ambient	200	357	°C/W	

Notes:

3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size. 4. Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead minimum 6 cm^2 .

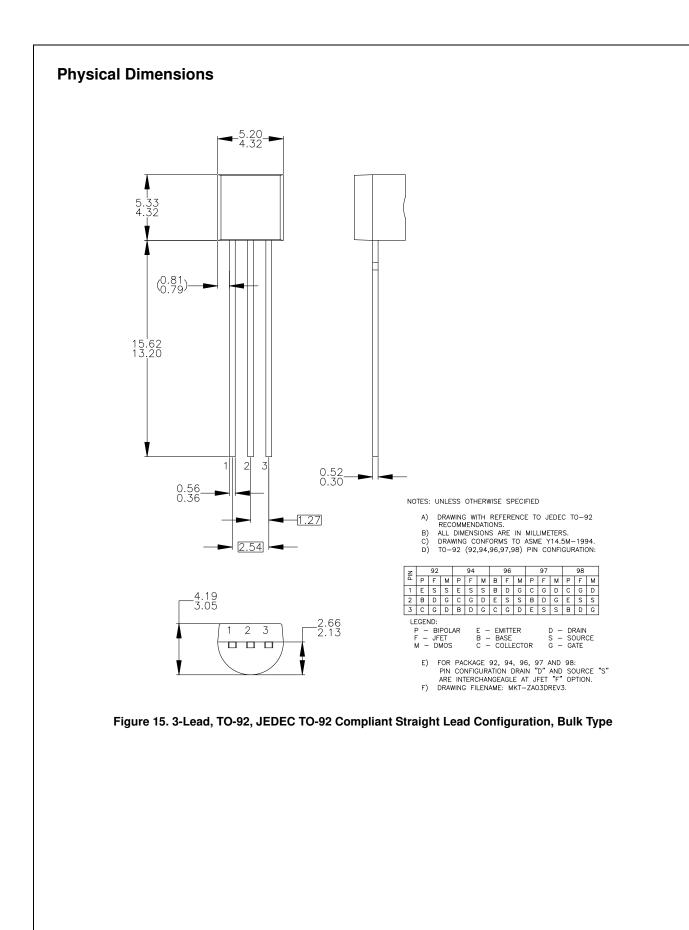

Electrical Characteristics

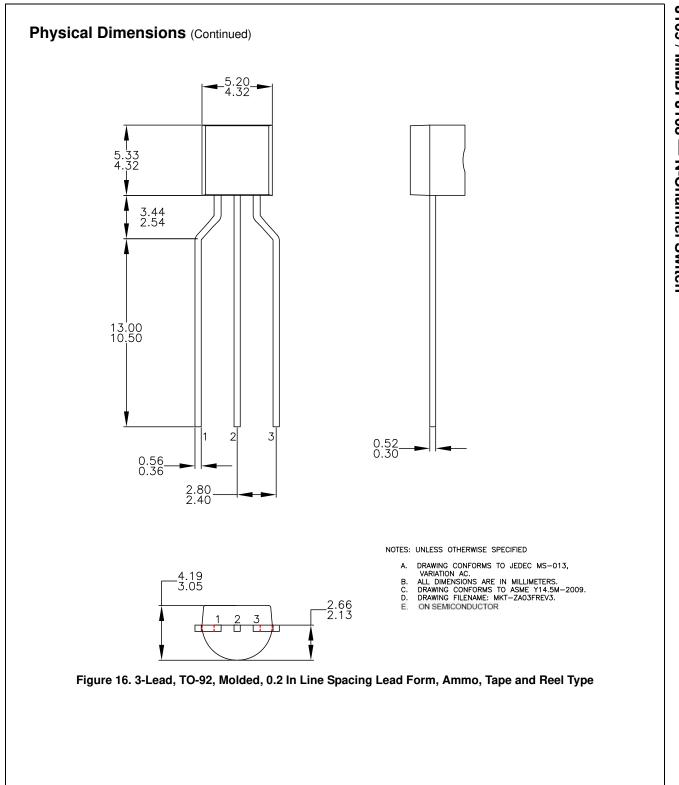
Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

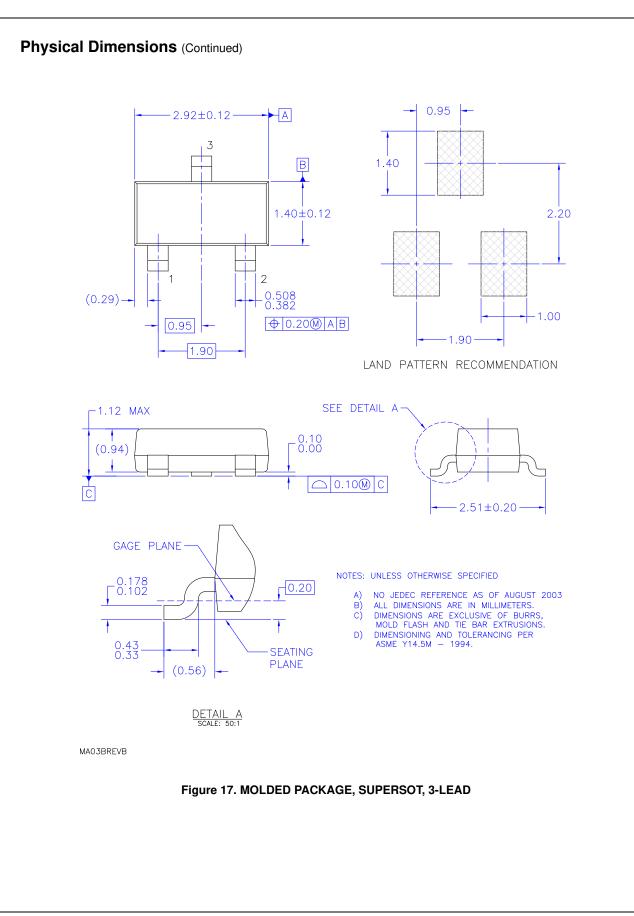
Symbol	Parameter	Conditions		Min.	Max.	Unit
Off Charac	teristics				•	
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = -10 \ \mu A, \ V_{DS} = 0$		-25		V
I _{GSS}	Gata Povorca Current	$V_{GS} = -15 V, V_{DS} = 0$			-3.0	nA
	Gate Reverse Current	$V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			-200	
V _{GS} (off)	Gate-Source Cut-Off Voltage	V _{DS} = 15 V, I _D = 10 nA	MMBFJ108	-3.0	-10.0	v
			J109	-2.0	-6.0	
On Charac	teristics					•
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁵⁾	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0$	MMBFJ108	80		mA
			J109	40		
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \leq 0.1 \text{ V}, \text{ V}_{GS} = 0$	MMBFJ108		8.0	Ω
			J109		12	
Small Sigr	al Characteristics					•
C _{dg} (on) C _{sg} (off)	Drain-Gate &Source-Gate On Capacitance	$V_{DS} = 0, V_{GS} = 0, f = 1.0 \text{ MHz}$			85	pF
C _{dg} (off)	Drain-Gate Off Capacitance	$V_{DS} = 0, V_{GS} = -10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$			15	pF
C _{sg} (off)	Source-Gate Off Capacitance	V _{DS} = 0, V _{GS} = -10 V, f = 1.0 MHz			15	pF

Note:

5. Pulse test: pulse width \leq 300 $\mu s,$ duty cycle \leq 2%.


J109 / MMBFJ108 ---**N-Channel Switch**


25


10

10 50 T_A = 25°C t OFF- TURN-OFF TIME (ns) 07 05 10 10 10 ton - TURN-ON TIME (ns) V_{DD} = 1.5V 8 V_{GS(off)} = -8.5V V _{GS(off)}= - 12V 5.5V V_{GS(off)} = · 6 I _D = 30 mA 3.5V V_{GS(off)} 4 T_A = 25 °C = 10 mA ם ו V_{DD} = 1.5V 2 'GS(off)= - 12V 0 0 0 -2 -4 -6 -8 -10 0 5 10 15 20 VGS(off) - GATE-SOURCE CUTOFF VOLTAGE (V) I_D - DRAIN CURRENT (mA) Figure 9. Switching Turn-On Time vs. Figure 10. Switching Turn-On Time vs. Drain Current Gate-Source Cut-Off Voltage g os - OUTPUT CONDUCTANCE (µmhos) - DRAIN "ON" RESISTANCE (0) 100 100 50 V_{GS(off)}=-3.0V VGS(o 125°C 125°C 4 0 10 10 1 ·⊁╡┼╞ 15V 5 25°C 55°C T_A = 25°C 25°C V_{GS(off)}= - 5.0V r _{DS} - 1.0V f = 1.0 kHz 1 ► 0.1 1 1 1 10 100 I D - DRAIN CURRENT (mA) I D - DRAIN CURRENT (mA) Figure 11. On Resistance vs. Drain Current Figure 12. Output Conductance vs. Drain Current g fs - TRANSCONDUCTANCE (mmhos) 100 T_A= 25℃ 55°C 700 V_{DG} = 10V 600 P_b - POWER DISSIPATION(mW) f = 1.0 kHz 500 TO-92 SuperSOT-3 400 10 300 - 1 0 GS(off) 200 V_{GS(off)} = -3.0V V_{GS(off)} = -5.0V 100 1 0.1 0 10 1 125 I_D - DRAIN CURRENT (mA) TEMPERATURE (°C) Figure 14. Power Dissipation vs. Figure 13. Transconductance vs. Drain Current **Ambient Temperature**

Typical Performance Characteristics (Continued)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative