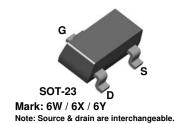


J175 / J176 / MMBFJ175 / MMBFJ176 / MMBFJ177 P-Channel Switch


Description

This device is designed for low-level analog switching sample-and-hold circuits and chopper-stabilized amplifiers. Sourced from process 88.

Figure 1. J175 / J176 Device Package

Figure 2. MMBFJ175 / 176 / 177 Device Package

Ordering Information

Part Number	Marking	Package	Packing Method
J175-D26Z	J175	TO-92 3L	Tape and Reel
J176-D74Z	J176	TO-92 3L	Ammo
MMBFJ175	6W	SOT-23 3L	Tape and Reel
MMBFJ176	6X	SOT-23 3L	Tape and Reel
MMBFJ177	6Y	SOT-23 3L	Tape and Reel

Absolute Maximum Ratings(1),(2)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Value	Unit
V_{DG}	Drain-Gate Voltage	-30	V
V_{GS}	Gate-Source Voltage	30	V
I_{GF}	Forward Gate Current	50	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to + 150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or lowduty cycle operations.

Thermal Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

		Ma		
Symbol	Parameter	J175 / J176 ⁽³⁾	MMBFJ175 / MMBFJ176 / MMBFJ177 ⁽³⁾	Unit
P _D	Total Device Dissipation	350	225	mW
	Derate Above 25°C	2.8	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

Note:

3. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Conditions		Min.	Max.	Unit
Off Charact	teristics					
$V_{(BR)GSS}$	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu A, V_{DS} = 0$		30		V
I _{GSS}	Gate Reverse Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0$			1.0	nA
			J175 / MMBFJ175	3.0	6.0	
$V_{GS(off)}$	Gate-Source Cut-Off Voltage	$V_{DS} = -15 \text{ V}, I_{D} = -10 \text{ nA}$	J176 / MMBFJ176	1.0	4.0	V
			MMBFJ177	8.0	2.5	
On Charact	eristics					
			J175 / MMBFJ175	-7.0	-60.0	
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁴⁾	$V_{DS} = -15 \text{ V}, I_{GS} = 0$	J176 / MMBFJ176	-2.0	-25.0	mA
			MMBFJ177	-1.5	-20.0	
r _{DS(on)}	Drain-Source On Resistance	V _{DS} ≤				

Note:

4. Pulse test: pulse width $\leq 300~\mu s,$ duty cycle $\leq 2.0\%.$

Typical Performance Characteristics

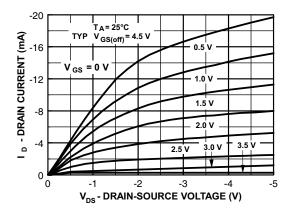


Figure 3. Common Drain-Source

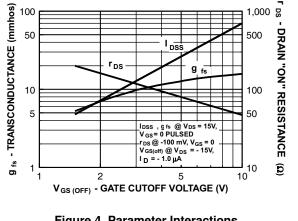


Figure 4. Parameter Interactions

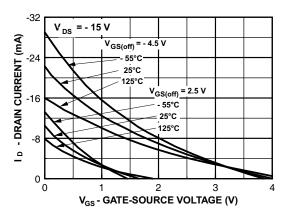


Figure 5. Transfer Characteristics

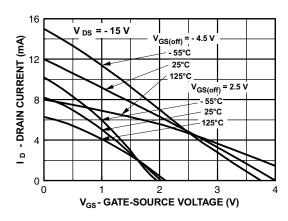


Figure 6. Transfer Characteristics

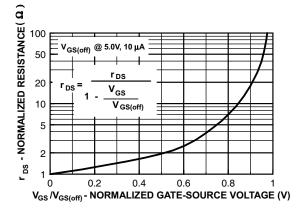


Figure 7. Normalized Drain Resistance vs. **Bias Voltage**

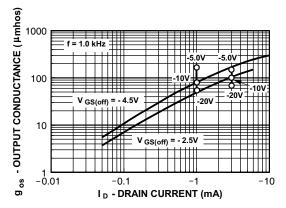


Figure 8. Output Conductance vs. Drain Current

Typical Performance Characteristics (Continued)

Figure 9. Transconductance vs. Drain Current

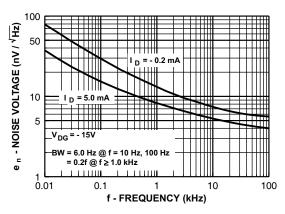


Figure 11. Noise Voltage vs. Frequency

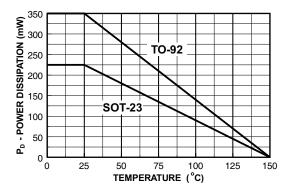


Figure 13. Power Dissipation vs. Ambient Temperature

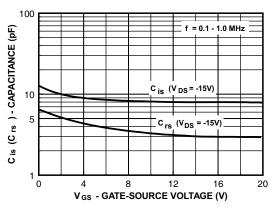


Figure 10. Capacitance vs. Voltage

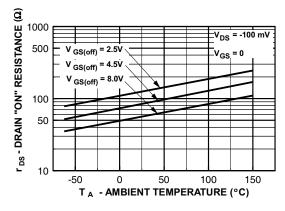
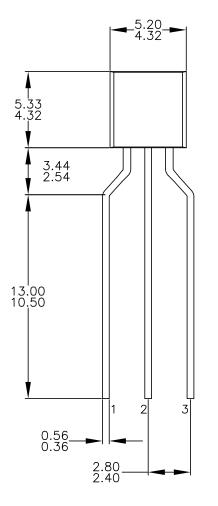
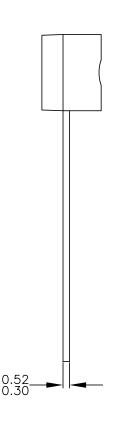
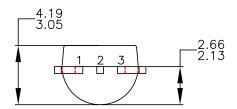





Figure 12. Channel Resistance vs. Temperature

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3FREV3.
 ON SEMICONDUCTOR

Figure 14. 3-Lead, TO-92, Molded, 0.2 In Line Spacing Lead Form

Physical Dimensions (Continued) 0.95 2.92±0.20 3 1.40 1.30+0.20 2.20 2 0.60 0.37 (0.29) -0.95 ⊕ 0.20M A B 1.00 1.90 1.90 LAND PATTERN RECOMMENDATION 1.20 MAX SEE DETAIL A (0.93)0.10 0.00 △ 0.10∭ C C 2.40±0.30 NOTES: UNLESS OTHERWISE SPECIFIED **GAGE PLANE** A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H. B) ALL DIMENSIONS ARE IN MILLIMETERS. 0.23 0.08 C) DIMENSIONS ARE INCLUSIVE OF BURRS, 0.25 MOLD FLASH AND TIE BAR EXTRUSIONS. D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994. 0.20 MIN **SEATING** E) DRAWING FILE NAME: MA03DREV10 **PLANE** (0.55)DETAIL A

Figure 15. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative