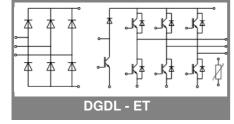


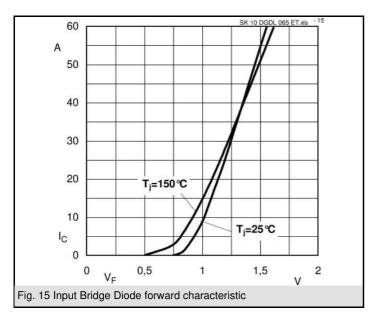
SEMITOP® 3

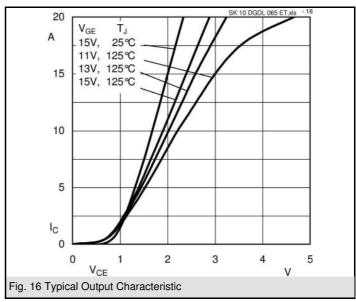
3-phase bridge rectifier + brake chopper +3-phase bridge inverter SK 10 DGDL 065 ET

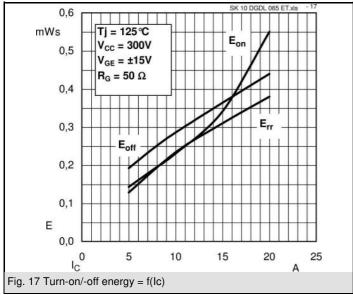
Preliminary Data

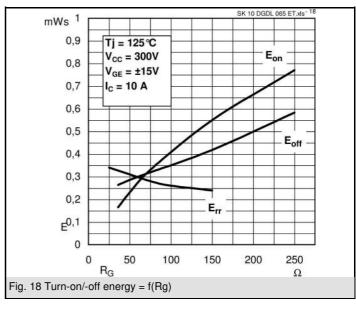
Features

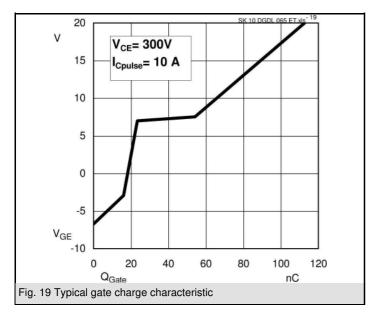

- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL Technology FWD
- Integrated NTC temperature sensor

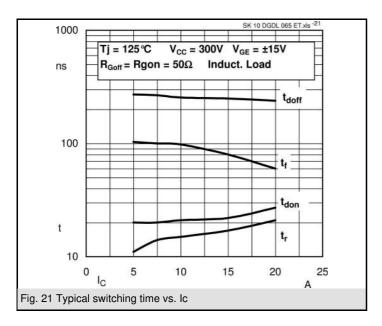

Typical Applications*

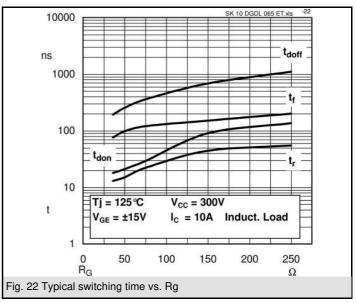

Inverter

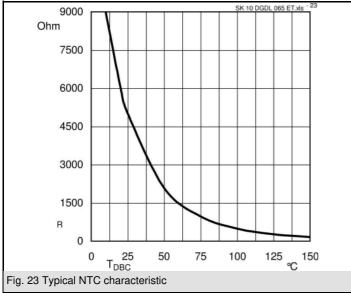

Absolute Maximum Ratings		I _s = 25°C, unless otherwis	I _s = 25°C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I_{C}	T _s = 25 (80) °C	17 (11)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	20	Α				
V_{GES}		±20	V				
T_j		-40 + 150	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (80) °C	22 (15)	Α				
I_{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	28	Α				
T _j		-40 + 150	°C				
Rectifier	•		•				
V_{RRM}		800	V				
I _F	T _s = 80 °C	21	Α				
I_{FSM} / I_{TSM}	$t_p = 10 \text{ ms}$, sin 180 ° , $T_i = 25 \text{ °C}$	220	Α				
I ² t	$t_p = 10 \text{ ms}$, sin 180 °, $T_i = 25 \text{ °C}$	240	A²s				
T_j		-40 + 150	°C				
T _{sol}	Terminals, 10s	260	°C				
T _{stg}		-40 + 125	°C				
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V				
01		T = 25°C unless otherwis	ifi-d				

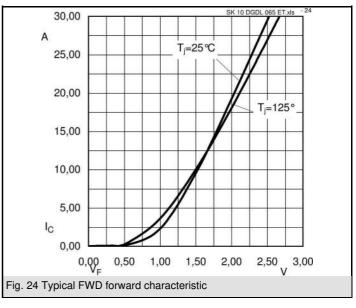

Characteristics		T _s = 25°C	T _s = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - In	verter, Chopper	•			•			
V _{CEsat}	I _C = 6 A, T _i = 25 (125) °C		2 (2,3)	2,5	V			
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0.5 \text{ mA}$	3	4	5	V			
V _{CE(TO)}	T _i = 25 °C (125) °C		1,2 (1,1)	1,3	V			
r _T	T _j = 25 °C (125) °C		133 (183)	200	mΩ			
C _{ies}	V'_{CE} = 25 V_{GE} = 0 V, f = 1 MHz		0,5		nF			
C _{oes}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,1		nF			
C _{res}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		0,1		nF			
$R_{th(j-s)}$	per IGBT			2	K/W			
$t_{d(on)}$	under following conditions		45		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns			
t _{d(off)}	$I_C = 6 \text{ A}, T_j = 125 °C$		340		ns			
t _f	$R_{Gon} = R_{Goff} = 210 \Omega$		25		ns			
E _{on}	inductive load		0,18		mJ			
E _{off}			0,13		mJ			
Diode - II	nverter, Chopper							
$V_F = V_{EC}$	I _F = 6 A, T _i = 25(125) °C		1,3 (1,2)	1,5	V			
$V_{(TO)}$	T _j = 25 °C (125) °C		1 (0,9)	1,1	V			
r_T	T _j = 25 °C (125) °C		45 (50)	60	mΩ			
$R_{th(j-s)}$	per diode			2,3	K/W			
I _{RRM}	under following conditions		8,4		Α			
Q_{rr}	$I_F = 6 \text{ A}, V_R = 300 \text{ V}$		0,8		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125 ^{\circ}\text{C}$		0,18		mJ			
	$di_{F/dt} = 170 \text{ A/}\mu\text{s}$							
Diode re								
V_{F}	I _F = 15 A, T _j = 25() °C		1,1		V			
$V_{(TO)}$	T _j = 150 °C		0,8		V			
r_T	T _j = 150 °C		20		mΩ			
$R_{th(j-s)}$	per diode			2,7	K/W			
	tur sensor							
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanical data								
w			30		g			
M_s	Mounting torque			2,5	Nm			

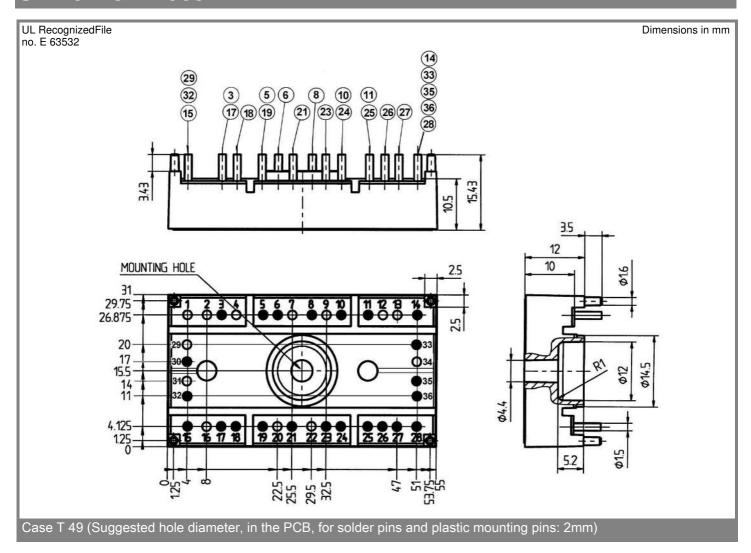


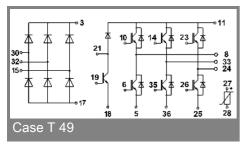












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.