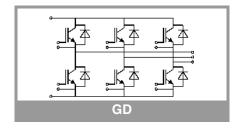


IGBT modules

SKM25GD125D

Target Data

Features


- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x Icnom
- Fast & soft inverse CAL diodes
- Large clearance (10 mm) and creepage distances (20 mm)
- Isolated copper baseplate using DBC Technology (Direct Copper Bonding)
- UL recognized, file no. E63532

Typical Applications*

- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz
- · DC servo and robot drives

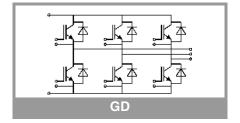
$\begin{array}{ c c c c c c } \hline \textbf{IGBT} \\ \hline V_{CES} & T_j = 25 ^{\circ}\text{C} \\ \hline I_C & T_j = 150 ^{\circ}\text{C} \\ \hline & T_c = 25 ^{\circ}\text{C} \\ \hline & T_c = 80 ^{\circ}\text{C} \\ \hline & T_c = 80 ^{\circ}\text{C} \\ \hline & 27 & A \\ \hline & 25 & A \\ \hline & I_{CRM} & I_{CRM} = 2xI_{Cnom} \\ \hline & V_{GES} & 50 & A \\ \hline & V_{GES} & 50 & V \\ \hline & V_{CC} = 600 V \\ \hline & V_{CCS} \leq 15 V \\ \hline & V_{CCS} \leq 1200 V \\ \hline & Inverse diode \\ \hline & I_F & T_j = 150 ^{\circ}\text{C} & T_c = 25 ^{\circ}\text{C} & 47 & A \\ \hline & T_c = 80 ^{\circ}\text{C} & 32 & A \\ \hline \end{array}$	Absolute Maximum Ratings							
$\begin{array}{ c c c c c c } \hline V_{CES} & T_j = 25 ^{\circ}C & 1200 & V \\ \hline I_{C} & T_{j} = 150 ^{\circ}C & T_{c} = 25 ^{\circ}C & 39 & A \\ \hline T_{C} = 80 ^{\circ}C & 27 & A \\ \hline I_{CNOM} & I_{CRM} = 2xI_{Cnom} & 50 & A \\ \hline V_{GES} & -20 \dots 20 & V \\ \hline t_{psc} & V_{GE} \leq 15 V & T_{j} = 125 ^{\circ}C & 10 & \mus \\ \hline T_{j} & -55 \dots 150 & ^{\circ}C \\ \hline Inverse \ diode & \hline I_{F} & T_{j} = 150 ^{\circ}C & T_{C} = 80 ^{\circ}C & 32 & A \\ \hline \end{array}$	lues Unit	Value		Symbol				
$\begin{array}{ c c c c c c c c }\hline I_C & & & & & & & & & & & & & & & & & & &$					IGBT			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200 V	120		T _j = 25 °C	V _{CES}			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39 A	39	T _c = 25 °C	$T_{c} = 25$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 A	27	T _c = 80 °C	1, = 130 0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 A	25			I _{Cnom}			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50 A	50		$I_{CRM} = 2xI_{Cnom}$	I _{CRM}			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 V	-20			V_{GES}			
Inverse diode $T_c = 25 ^{\circ}\text{C}$ $T_c = 25 ^{\circ}\text{C}$ $T_c = 80 ^{\circ}\text{C}$ $T_$	10 μs	10	T _j = 125 °C	$V_{GE} \le 15 \text{ V}$	t _{psc}			
	150 °C	-55			T _j			
$T_{\rm j} = 150^{\circ}{\rm C}$ $T_{\rm c} = 80^{\circ}{\rm C}$ 32 A				ode	Inverse di			
$I_c = 80 ^{\circ}\text{C}$ 32 A	17 A	47		T. – 150 °C	IF			
10 0	32 A	32	T _c = 80 °C	11 = 130 C				
Fnom 40 A	10 A	40	•		I _{Fnom}			
I_{FRM} $I_{FRM} = 2xI_{Fnom}$ 80 A	30 A	80		I _{FRM} = 2xI _{Fnom}	I _{FRM}			
I_{FSM} $t_p = 10 \text{ ms, sin } 180^{\circ}, T_j = 25 ^{\circ}C$ 410 A	10 A	410	°, T _j = 25 °C	$t_p = 10 \text{ ms, sin } 180^\circ$	I _{FSM}			
T _j -40 150 °C	150 °C	-40			Tj			
Module					Module			
$I_{t(RMS)}$ $T_{terminal} = 80 ^{\circ}C$ 100 A	00 A	100		T _{terminal} = 80 °C	I _{t(RMS)}			
	125 °C	-40						
	000 V	400	= 1 min	AC sinus 50 Hz, t =				

Characte	ristics					
Symbol	Conditions	min.	typ.	max.	Unit	
IGBT	•					•
V _{CE(sat)}	$I_C = 25 A$ $V_{GE} = 15 V$ chiplevel	T _j = 25 °C		3.20	3.70	V
		T _j = 125 °C		3.60	4.20	V
V_{CE0}	0 chiplevel	T _j = 25 °C		1.5	1.75	V
	Chipievei	T _j = 125 °C		1.7	1.95	V
r _{CE}	$V_{GE} = 15 \text{ V}$	T _j = 25 °C		68.00	78.00	mΩ
	chiplevel	T _j = 125 °C		76.00	90.00	mΩ
$V_{\text{GE(th)}}$	$V_{GE}=V_{CE}$, $I_{C}=1$ r	nA	4.5	5.5	6.5	V
I _{CES}	V _{GE} = 0 V V _{CE} = 1200 V	T _j = 25 °C		0.1	0.3	mA
						mA
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		1.65		nF
Coes		f = 1 MHz		0.25		nF
C _{res}		f = 1 MHz		0.11		nF
Q_G	V _{GE} = -8 V+ 20 V			221		nC
R _{Gint}	T _j = 25 °C			0.00		Ω
t _{d(on)}	$V_{CC} = 600 \text{ V}$ $I_{C} = 25 \text{ A}$ $V_{GE} = \pm 15 \text{ V}$ $R_{G \text{ on}} = 16 \Omega$ $R_{G \text{ off}} = 16 \Omega$	T _j = 125 °C		25		ns
t _r		T _j = 125 °C		19		ns
E _{on}		T _j = 125 °C		3.9		mJ
t _{d(off)}		T _j = 125 °C		184		ns
t _f		T _j = 125 °C		8		ns
E _{off}		T _j = 125 °C		1.6		mJ
R _{th(j-c)}	per IGBT	•			0.56	K/W

IGBT modules

SKM25GD125D

Target Data


Features

- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x Icnom
- Fast & soft inverse CAL diodes
- Large clearance (10 mm) and creepage distances (20 mm)
- Isolated copper baseplate using DBC Technology (Direct Copper Bonding)
- UL recognized, file no. E63532

Typical Applications*

- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz
- DC servo and robot drives

Characteristics							
Symbol	Conditions	min.	typ.	max.	Unit		
Inverse diode							
$V_F = V_{EC}$	$I_F = 40 \text{ A}$	T _j = 25 °C		2.13	2.65	V	
	V _{GE} = 0 V chiplevel	T _j = 125 °C		1.94	2.46	V	
V_{F0}	chiplevel	T _j = 25 °C		1.1	1.45	V	
	Chipievei	T _j = 125 °C		0.85	1.2	V	
r _F	chiplevel	T _j = 25 °C		25.7	30.0	mΩ	
	Chipievei	T _j = 125 °C		27.1	31.4	mΩ	
I _{RRM}	$I_F = 25 \text{ A}$	T _j = 125 °C		50		Α	
Q _{rr}	$di/dt_{off} = 2500 \text{ A/}\mu\text{s}$ $V_{GE} = \pm 15 \text{ V}$	T _j = 125 °C		4		μC	
E _{rr}	$V_{CC} = 600 \text{ V}$	T _j = 125 °C		1.1		mJ	
R _{th(j-c)}	per diode				1	K/W	
Module							
L _{CE}					60	nH	
R _{CC'+EE'}	terminal-chip	T _C = 25 °C				mΩ	
terriinar eriip	T _C = 125 °C				mΩ		
R _{th(c-s)}	per module				0.05	K/W	
Ms	to heat sink M6		4		5	Nm	
Mt						Nm	
						Nm	
w					175	g	

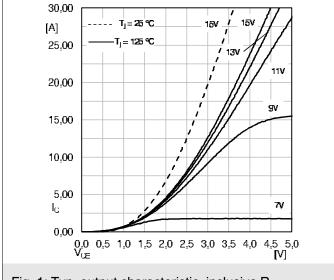


Fig. 1: Typ. output characteristic, inclusive R_{CC'+ EE'}

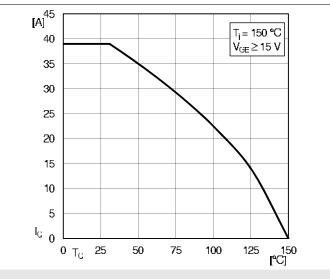


Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

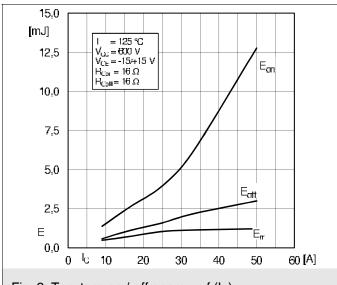
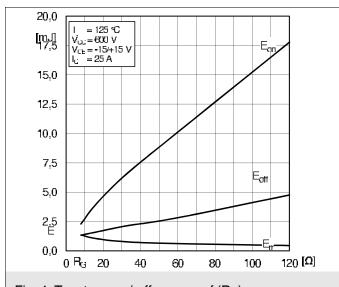
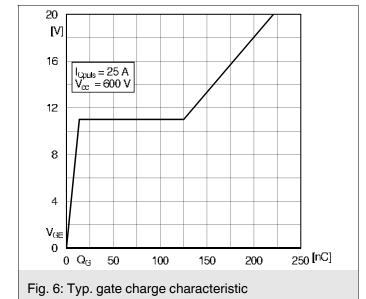
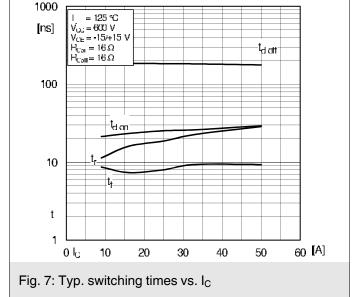
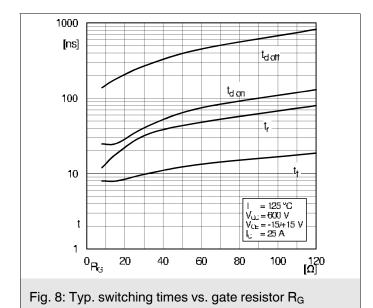
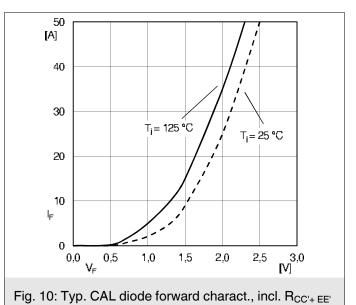
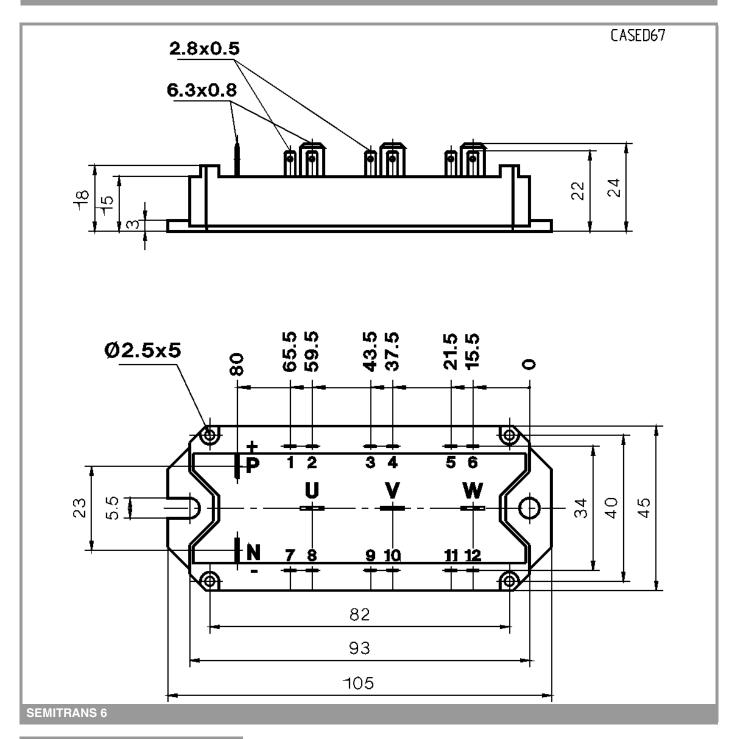
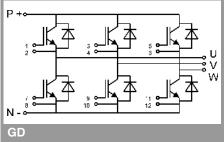


Fig. 3: Typ. turn-on /-off energy = $f(I_C)$


Fig. 4: Typ. turn-on /-off energy = $f(R_G)$



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.