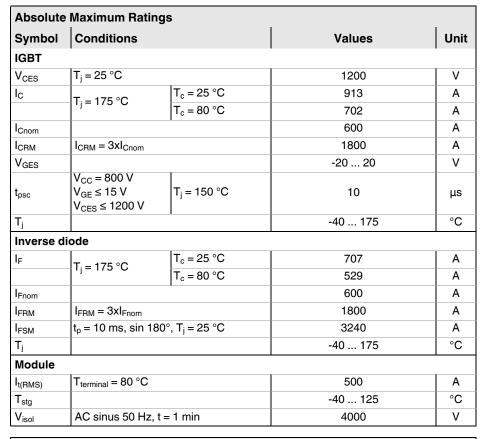


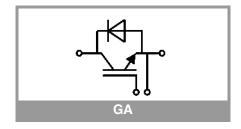
IGBT4 Modules

SKM600GA12E4

Features


- IGBT4 = 4. generation medium fast trench IGBT (Infineon)
- CAL4 = Soft switching 4. generation CAL-diode
- Isolated copper baseplate using DBC technology (Direct Bonded Copper)
- Increased power cycling capability
- · With integrated gate resistor
- · For higher switching frequenzies up to 12kHz
- UL recognized, file no. E63532

Typical Applications*


- · AC inverter drives
- UPS
- Switched reluctance motor

Remarks

- · Case temperature limited to $T_c = 125$ °C max, recomm. $T_{op} = -40 ... +150^{\circ}C$, product rel. results valid for $T_i = 150^{\circ}$
- Short circuit: Soft Turn-off recommended RGoff > 20 Ω
- With RG = 2Ω the RBSOA is limited to 1 x ICnom = 600 A

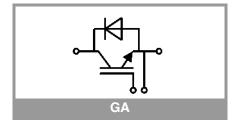
Characteristics									
Symbol	Conditions	min.	typ.	max.	Unit				
IGBT						•			
V _{CE(sat)}	$I_{\rm C} = 600 {\rm A}$	T _j = 25 °C		1.80	2.05	V			
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.20	2.40	V			
V _{CE0}	chiplevel	T _j = 25 °C		8.0	0.9	V			
		T _j = 150 °C		0.7	8.0	V			
r _{CE}	V _{GE} = 15 V chiplevel	T _j = 25 °C		1.67	1.92	mΩ			
		T _j = 150 °C		2.50	2.67	mΩ			
$V_{\text{GE(th)}}$	$V_{GE}=V_{CE}$, $I_C=24$ mA		5	5.8	6.5	V			
I _{CES}	V _{GE} = 0 V V _{CE} = 1200 V	T _j = 25 °C			5	mA			
		T _j = 150 °C				mA			
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		37.2		nF			
Coes		f = 1 MHz		2.32		nF			
C _{res}		f = 1 MHz		2.04		nF			
Q_G	V _{GE} = - 8 V+ 15 V			3400		nC			
R _{Gint}	T _j = 25 °C			1.3		Ω			
t _{d(on)}	$\begin{split} &V_{CC} = 600 \text{ V} \\ &I_{C} = 600 \text{ A} \\ &V_{GE} = \pm 15 \text{ V} \\ &R_{G \text{ on}} = 2 \Omega \\ &R_{G \text{ off}} = 2 \Omega \\ &\text{di/dt}_{on} = 6000 \text{ A/}\mu\text{s} \\ &\text{di/dt}_{off} = 5200 \text{ A/}\mu\text{s} \end{split}$	T _j = 150 °C		195		ns			
t _r		T _j = 150 °C		90		ns			
E _{on}		T _j = 150 °C		74		mJ			
t _{d(off)}		T _j = 150 °C		690		ns			
t _f		T _j = 150 °C		130		ns			
E _{off}		T _j = 150 °C		84		mJ			
R _{th(j-c)}	per IGBT				0.049	K/W			

IGBT4 Modules

SKM600GA12E4

Features

- IGBT4 = 4. generation medium fast trench IGBT (Infineon)
- CAL4 = Soft switching 4. generation CAL-diode
- Isolated copper baseplate using DBC technology (Direct Bonded Copper)
- Increased power cycling capability
- With integrated gate resistor
- For higher switching frequenzies up to 12kHz
- UL recognized, file no. E63532


Typical Applications*

- AC inverter drives
- UPS
- Switched reluctance motor

Remarks

- Case temperature limited to T_c = 125°C max, recomm.
 T_{op} = -40 ... +150°C, product rel. results valid for T_i = 150°
- Short circuit: Soft Turn-off recommended RGoff > 20 Ω
- With RG = 2 Ω the RBSOA is limited to 1 x ICnom = 600 A

Characteristics											
Symbol	Conditions	min.	typ.	max.	Unit						
Inverse diode											
$V_F = V_{EC}$	$I_F = 600 \text{ A}$	T _j = 25 °C		2.14	2.46	V					
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.07	2.38	V					
V_{F0}	chiplevel	T _j = 25 °C		1.3	1.5	V					
	Chipievei	T _j = 150 °C		0.9	1.1	V					
r _F	chiplevel	T _j = 25 °C		1.4	1.6	mΩ					
		T _j = 150 °C		1.9	2.1	mΩ					
I _{RRM}	$I_F = 600 \text{ A}$ $di/dt_{off} = 5500 \text{ A/}\mu\text{s}$ $V_{GE} = \pm 15 \text{ V}$ $V_{CC} = 600 \text{ V}$	T _j = 150 °C		420		Α					
Q _{rr}		T _j = 150 °C		92		μC					
E _{rr}		T _j = 150 °C		38		mJ					
R _{th(j-c)}	per diode				0.086	K/W					
Module											
L _{CE}				15	20	nH					
R _{CC'+EE'}	terminal-chip	T _C = 25 °C		0.18		mΩ					
		T _C = 125 °C		0.22		mΩ					
R _{th(c-s)}	per module			0.02	0.038	K/W					
Ms	to heat sink M6		3		5	Nm					
Mt	to terminals	M6	2.5		5	Nm					
		M4	1.1		2	Nm					
W		•			330	g					

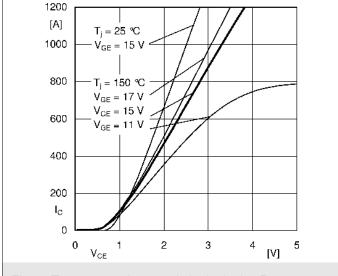


Fig. 1: Typ. output characteristic, inclusive $R_{CC'+\; EE'}$

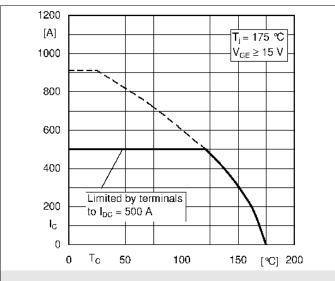


Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

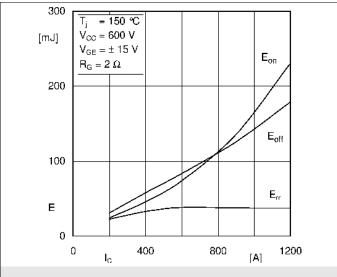
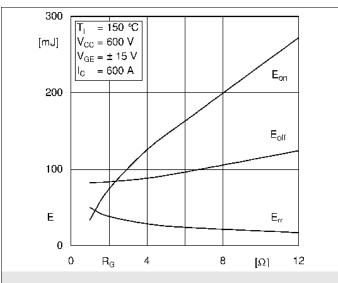
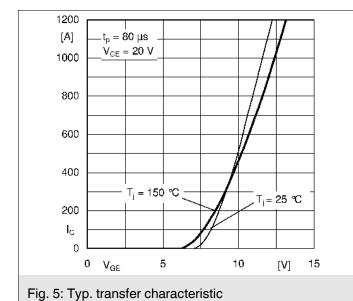
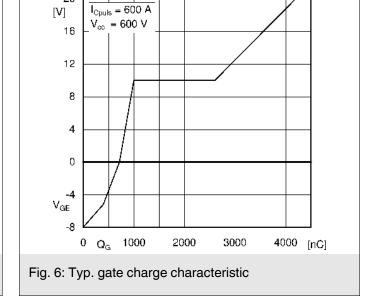
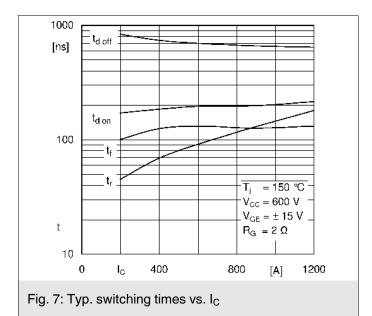
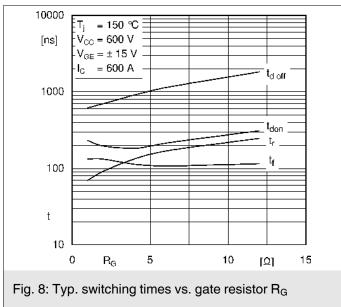
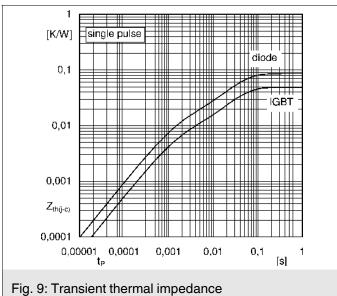
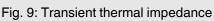


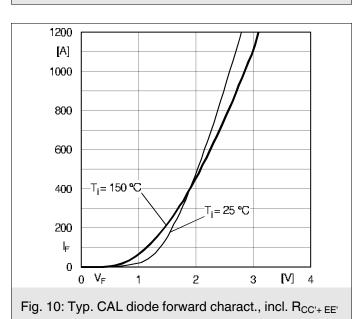
Fig. 3: Typ. turn-on /-off energy = $f(I_C)$


Fig. 4: Typ. turn-on /-off energy = $f(R_G)$


20





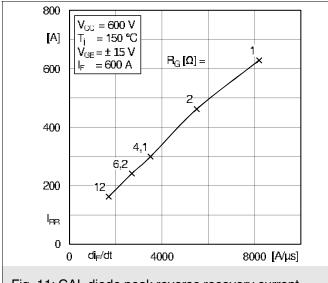


Fig. 11: CAL diode peak reverse recovery current

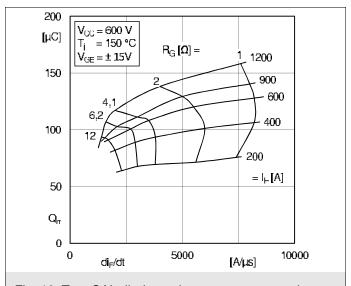
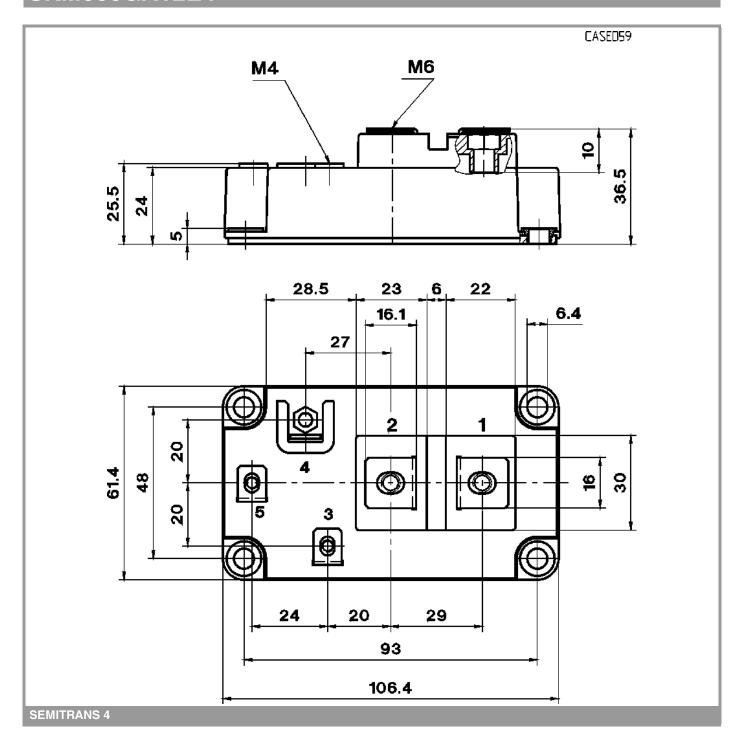
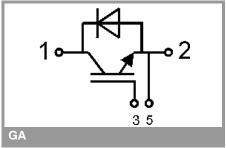




Fig. 12: Typ. CAL diode peak reverse recovery charge

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.