

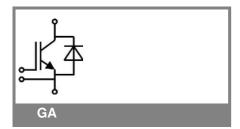
Trench IGBT Modules

SKM 800GA176D

Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*


- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)
- Wind power

Remarks

• $I_{DC} \le 500 \text{ A limited for T}_{Terminal} = 100 \,^{\circ}\text{C}$

Absolute	Maximum Ratings	T _c =	= 25 °C, unless otherwise specified			
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		1700	V		
I _C	$T_{\rm j} = 150 ^{\circ}{\rm C}$ $T_{\rm c} = 25 ^{\circ}{\rm C}$)	830	Α		
	T _c = 80 °C		590	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		1200	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 1200 V; $V_{GE} \le 20$ V; T_{j} = 125 °	С	10	μs		
·	V _{CES} < 1700 V					
Inverse D	Diode					
I_{F}	$T_{j} = 150 ^{\circ}\text{C}$ $T_{c} = 25 ^{\circ}\text{C}$		630	Α		
	T _c = 80 °C	;	440	Α		
I _{FRM}	I _{FRM} =2xI _{Fnom}		1200	Α		
I _{FSM}	$t_p = 10 \text{ ms; sin.}$ $T_j = 150 ^\circ$	С	3600	Α		
Module	•					
I _{t(RMS)}			500	Α		
T _{vj}			- 40 + 150	°C		
T _{stg}			- 40 + 125	°C		
V _{isol}	AC, 1 min.		4000	V		

Characteristics T _c =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 24 \text{ mA}$		5,2	5,8	6,4	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	$T_j = 25 ^{\circ}C$			4	mA
V_{CE0}		T _j = 25 °C		1	1,2	V
		T _j = 125 °C		0,9	1,1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		1,7	2,1	mΩ
		T _j = 125°C		2,5		mΩ
V _{CE(sat)}	I _{Cnom} = 600 A, V _{GE} = 15 V			2	2,45	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,45	2,9	V
C _{ies}				39,6		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		2,2		nF
C _{res}				2,5		nF
Q_G	V _{GE} = -8V+15V			4800		nC
$t_{d(on)}$				230		ns
ţ,	$R_{Gon} = 3 \Omega$	V _{CC} = 1200V		90		ns
E _{on}	D - 2.0	I _C = 600A		335		mJ
t _{d(off)}	$R_{Goff} = 3 \Omega$	T _j = 125 °C V _{GE} = ± 15V		1030 160		ns ns
t _f		VGE - 1 13V		245		_
E _{off}				245		mJ
R _{th(j-c)}	per IGBT				0,04	K/W

Trench IGBT Modules

SKM 800GA176D

	^^	٠.		es
г	eа	ш	и	U S

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_c

Typical Applications*

- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)
- Wind power

Remarks

• $I_{DC} \le 500 \text{ A limited for T}_{Terminal} = 100 \,^{\circ}\text{C}$

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 600 \text{ A}; V_{GE} = 0 \text{ V}$			1,6	1,9	V		
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,6		V		
V_{F0}		T _j = 25 °C		1,1	1,3	V		
r _F		T _j = 25 °C		0,83	1	mΩ		
I _{RRM}	I _F = 600 A	T _i = 125 °C		650		Α		
Q_{rr}	di/dt = 6400 A/μs	•		230		μC		
E _{rr}	V _{GE} = -15 V; V _{CC} = 1200 V	/		155		mJ		
R _{th(j-c)D}	per diode				0,07	K/W		
Module								
L _{CE}				15	20	nΗ		
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ		
		T _{case} = 125 °C		0,22		mΩ		
R _{th(c-s)}	per module				0,038	K/W		
M _s	to heat sink M6		3		5	Nm		
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm		
w					330	g		

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

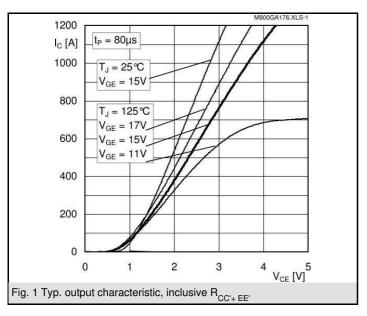
Trench IGBT Modules

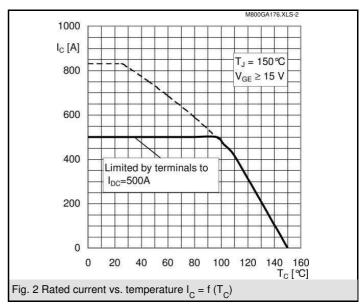
SKM 800GA176D

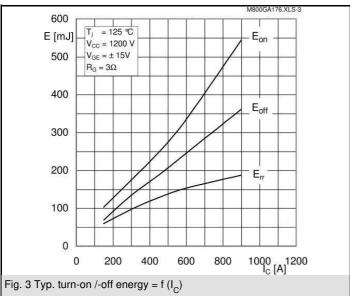
Z _{th} Symbol	Conditions	Values	Units
Z _{th(j-c)l}	i = 1	28	mk/W
R _i	i = 2	9,5	mk/W
R _i R _i	i = 3	2,17	mk/W
R _i	i = 4	0,33	mk/W
tau _i	i = 1	0,0447	s
tau _i	i = 2	0,02	s
tau _i	i = 3	0,0015	s
tau _i	i = 4	0,0025	s
Z., ., .,	•		
Z _{th(j-c)D}	i = 1	46	mk/W
R _i	i = 2	17	mk/W
Ri	i = 3	5,9	mk/W
R _i	i = 4	1,1	mk/W
tau _i	i = 1	0,05	s
tau _i	i = 2	0,0075	s
taui	i = 3	0,002	s
tau _i	i = 4	0,0002	s

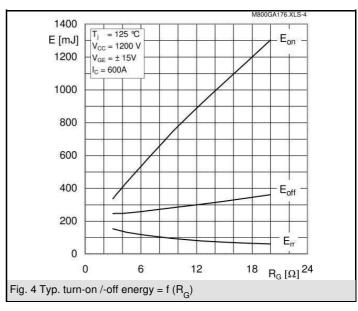
Features

- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CEsat} with positive temperature coefficient
- · High short circuit capability, self limiting to 6 x I_c


Typical Applications*


- AC inverter drives mains 575 -750 V AC
- Public transport (auxiliary syst.)
- Wind power


Remarks


 $I_{DC} \leq 500$ A limited for $T_{Terminal}$ = 100 °C

