

STGW33IH120D

30 A - 1200 V - very fast IGBT

Features

- Low saturation voltage
- High current capability
- Low switching loss
- Very soft ultra fast recovery antiparallel diode

Applications

- Induction cooking, microwave oven
- Soft switching application

Description

This IGBT utilizes the advanced PowerMESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior. This device is well suited for the resonant or soft switching application.

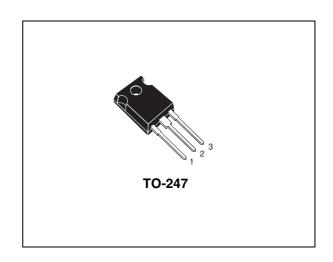


Figure 1. Internal schematic diagram

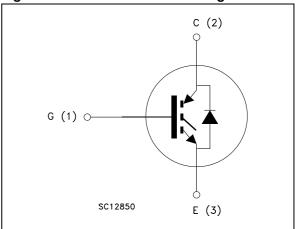


Table 1. Device summary

Order code	Marking	Package	Packaging
STGW33IH120D	GW33IH120D	TO-247	Tube

Contents STGW33IH120D

Contents

1	Electrical ratings 3
2	Electrical characteristics4
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data11
5	Revision history

STGW33IH120D Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	1200	V
I _C ⁽¹⁾	Collector current (continuous) at 25 °C	60	Α
I _C ⁽¹⁾	Collector current (continuous) at 100 °C	30	Α
I _{CL} (2)	Turn-off latching current	45	Α
I _{CP} (3)	Pulsed collector current	45	Α
V _{GE}	Gate-emitter voltage	±25	V
P _{TOT}	Total dissipation at T _C = 25 °C	220	W
IF	Diode RMS forward current at T _C = 25 °C	30	Α
I _{FSM}	Surge non repetitive forward current t _p = 10 ms sinusoidal		А
T _j	Operating junction temperature	-55 to 150	°C

^{1.} Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

- 2. Vclamp = 80% of V_{CES}, T_j =150 °C, R_G=10 Ω , V_{GE}=15 V
- 3. Pulse width limited by max. junction temperature allowed

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case IGBT max.	0.57	°C/W
R _{thj-case}	Thermal resistance junction-case diode max. 1.6		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max.	50	°C/W

Electrical characteristics STGW33IH120D

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	1200			٧
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 20 A V _{GE} = 15 V, I _C = 20 A, Tc =125 °C		2.2 2.0	2.8	V
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1 mA	3.75		5.75	٧
I _{CES}	Collector-cut-off current (V _{GE} = 0)	V _{CE} =1200 V V _{CE} =1200 V, Tc=125 °C			500 10	μA mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} =± 20 V			± 100	nA
g _{fs} ⁽¹⁾	Forward transconductance	V _{CE} = 25 V _, I _C = 20 A		20		S

^{1.} Pulsed: pulse duration= $300 \mu s$, duty cycle 1.5%

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} =0		2900 162 30		pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	V _{CE} = 960 V, I _C = 20 A,V _{GE} =15 V		127 18 50		nC nC nC

Table 6. Switching on/off (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	V_{CC} = 960 V, I_{C} = 20 A R_{G} = 10 Ω V_{GE} = 15 V, (see Figure 17)		46 10 1660		ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 960 \text{ V}, I_{C} = 20 \text{ A}$ $R_{G} = 10 \Omega V_{GE} = 15 \text{ V},$ $T_{C} = 125 \text{ °C} \text{ (see Figure 17)}$		45 12 1500		ns ns A/µs
$\begin{array}{c} t_{r}(V_{off}) \\ t_{d}(_{off}) \\ t_{f} \end{array}$	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 960 V, I_{C} = 20 A R_{G} = 10 Ω V_{GE} = 15 V, (see Figure 17)		102 284 180		ns ns ns
$t_r(V_{off})$ $t_d(_{off})$ t_f	Off voltage rise time Turn-off delay time Current fall time	V_{CC} = 960 V, I_{C} = 20 A R_{G} = 10 Ω V _{GE} = 15 V, T_{C} = 125 °C (see Figure 17)		200 424 316		ns ns ns

Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Eon ⁽¹⁾ E_{off} E_{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 960 V, I_{C} = 20 A R_{G} = 10 Ω V _{GE} = 15 V, (see Figure 17)		1.5 3.4 4.9		mJ mJ mJ
Eon ⁽¹⁾ E_{off} E_{ts}	Turn-on switching losses Turn-off switching losses Total switching losses	V_{CC} = 960 V, I_{C} = 20 A R_{G} = 10 Ω V _{GE} = 15 V, T_{C} = 125 °C (see Figure 17)		2.3 6.4 8.7		mJ mJ mJ

Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C)

^{2.} Turn-off losses include also the tail of the collector current

Electrical characteristics STGW33IH120D

Table 8. Collector-emitter diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on-voltage	I _F = 20 A I _F = 20 A, T _C = 125 °C		1.9 1.7		V V
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_F = 20 A, V_R = 45 V, di/dt = 100 A/µs (see Figure 20)		85 235 5.6		ns nC A
t _{rr} Q _{rr} I _{rrm}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_F = 20 A, V_R = 45 V, Tc = 125 °C, di/dt = 100 A/ μ s (see Figure 20)		152 722 9		ns nC A

2.1 Electrical characteristics (curves)

Figure 2. Output characteristics

Figure 3. Transfer characteristics

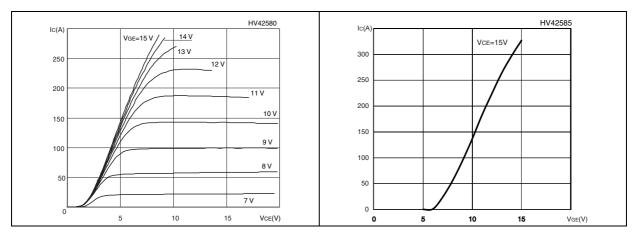


Figure 4. Transconductance

Figure 5. Collector-emitter on voltage vs temperature

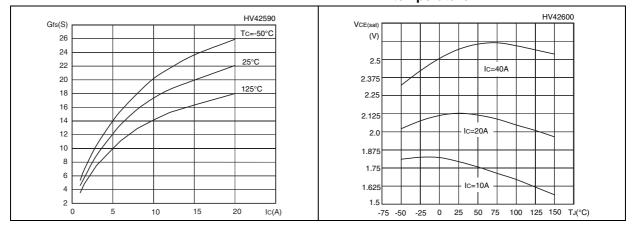
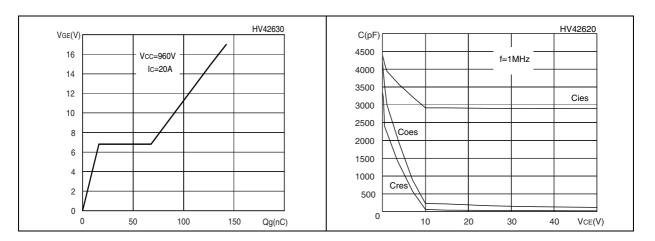



Figure 6. Gate charge vs gate-source voltage Figure 7. Capacitance variations

Electrical characteristics STGW33IH120D

Figure 8. Normalized gate threshold voltage Figure 9. Collector-emitter on voltage vs vs temperature collector current

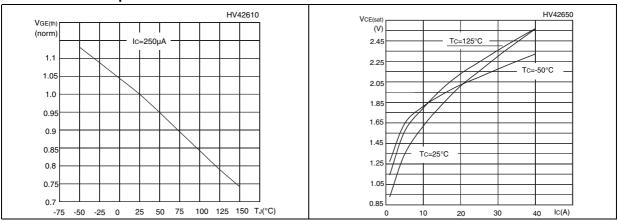


Figure 10. Normalized breakdown voltage vs Figure 11. Switching losses vs temperature temperature

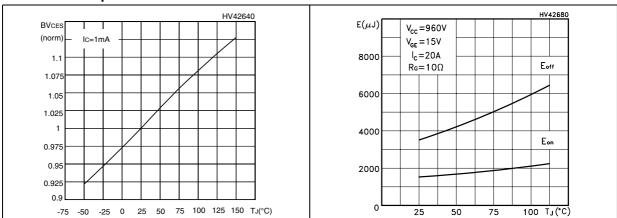


Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current

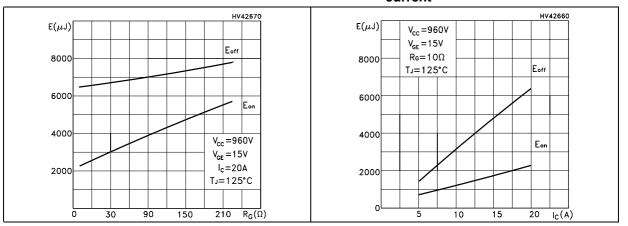


Figure 14. Thermal impedance

Figure 15. Turn-off SOA

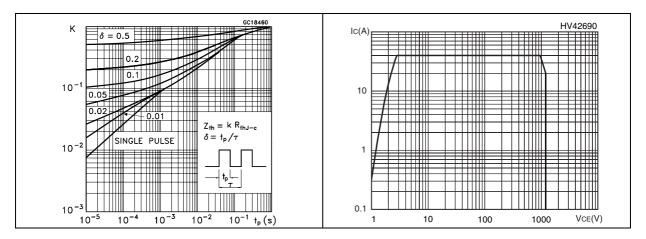
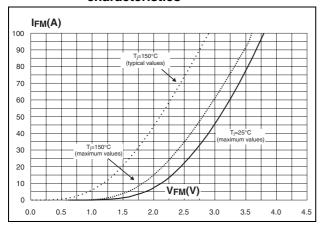



Figure 16. Emitter-collector diode characteristics

Test circuit STGW33IH120D

3 Test circuit

Figure 17. Test circuit for inductive load switching

Figure 18. Gate charge test circuit

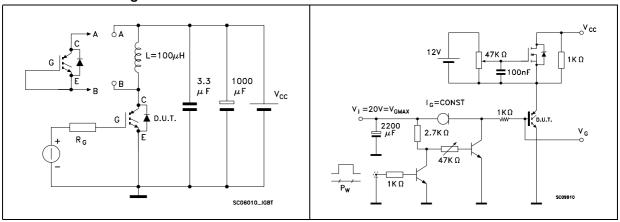
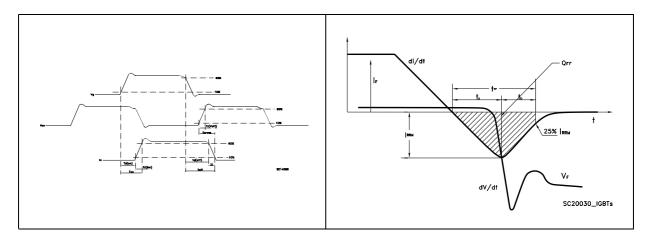
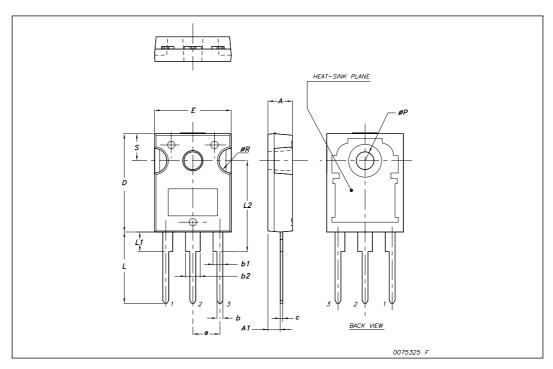



Figure 19. Switching waveform

Figure 20. Diode recovery time waveform



4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

TO-247 Mechanical data

Dim.		mm.	
Dilli.	Min.	Тур	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
øΡ	3.55		3.65
øR	4.50		5.50
S		5.50	

STGW33IH120D Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
12-Mar-2008	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com