

RoHS

COMPLIANT

# INT-A-PAK Half Bridge IGBT (Standard Speed IGBT), 200 A



**INT-A-PAK** 

| PRIMARY CHARACTERISTICS             |             |  |  |  |
|-------------------------------------|-------------|--|--|--|
| V <sub>CES</sub>                    | 600 V       |  |  |  |
| I <sub>C</sub> DC                   | 480 A       |  |  |  |
| V <sub>CE(on)</sub> at 200 A, 25 °C | 1.13 V      |  |  |  |
| Speed                               | DC to 1 kHz |  |  |  |
| Package                             | INT-A-PAK   |  |  |  |
| Circuit configuration               | Half bridge |  |  |  |

#### **FEATURES**

- Gen 4 IGBT technology
- Standard: optimized for hard switching speed
- Very low conduction losses
- Industry standard package
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912"><u>www.vishay.com/doc?99912</u></a>

#### **BENEFITS**

- · Increased operating efficiency
- Direct mounting to heatsink
- Performance optimized as output inverter stage for TIG welding machines

| ABSOLUTE MAXIMUM RATINGS             |                   |                                 |             |          |  |
|--------------------------------------|-------------------|---------------------------------|-------------|----------|--|
| PARAMETER                            | SYMBOL            | TEST CONDITIONS                 | MAX.        | UNITS    |  |
| Collector to emitter voltage         | V <sub>CES</sub>  |                                 | 600         | V        |  |
| Continuous collector current         |                   | T <sub>C</sub> = 25 °C          | 480         |          |  |
| Continuous collector current         | I <sub>C</sub>    | T <sub>C</sub> = 116 °C         | 200         | _        |  |
| Pulsed collector current             | I <sub>CM</sub>   |                                 | 800         | А        |  |
| Peak switching current               | I <sub>LM</sub>   |                                 | 800         |          |  |
| Gate to emitter voltage              | $V_{GE}$          |                                 | ± 20        | V        |  |
| RMS isolation voltage                | V <sub>ISOL</sub> | Any terminal to case, t = 1 min | 2500        | <b>V</b> |  |
| Maximum power dissipation            | P <sub>D</sub>    | T <sub>C</sub> = 25 °C          | 830         | w        |  |
|                                      |                   | T <sub>C</sub> = 85 °C          | 430         |          |  |
| Operating junction temperature range | TJ                |                                 | -40 to +150 | °C       |  |
| Storage temperature range            | T <sub>Stg</sub>  |                                 | -40 to +125 | 1        |  |

| <b>ELECTRICAL SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                      |                                                                         |     |       |       |      |
|--------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|-----|-------|-------|------|
| Collector to emitter breakdown voltage                                               | V <sub>BR(CES)</sub> | $V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$                            | 600 | -     | -     |      |
| Collector to emitter voltage                                                         | V <sub>CE(on)</sub>  | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 200 A                          | -   | 1.13  | 1.21  | V    |
|                                                                                      |                      | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 200 A, T <sub>J</sub> = 125 °C | -   | 1.08  | 1.18  | V    |
| Gate threshold voltage                                                               | $V_{GE(th)}$         | $I_C = 0.25 \text{ mA}$                                                 | 3   | 4.5   | 6     |      |
| Collector to emitter leakage current                                                 | I <sub>CES</sub>     | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V                          | -   | 0.025 | 1     | mA   |
|                                                                                      |                      | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 600 V, T <sub>J</sub> = 125 °C | -   | -     | 10    | IIIA |
| Gate to emitter leakage current                                                      | I <sub>GES</sub>     | V <sub>GE</sub> = ± 20 V                                                | -   | -     | ± 250 | nA   |



| <b>SWITCHING CHARACTERISTICS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                  |                                                                         |      |        |      |       |
|--------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|------|--------|------|-------|
| PARAMETER                                                                            | SYMBOL           | TEST CONDITIONS                                                         | MIN. | TYP.   | MAX. | UNITS |
| Total gate charge                                                                    | Qg               | I <sub>C</sub> = 200 A                                                  | -    | 1600   | 1700 |       |
| Gate to emitter charge                                                               | $Q_{ge}$         | V <sub>CC</sub> = 400 V                                                 | =    | 260    | 340  | nC    |
| Gate to collector charge                                                             | Q <sub>gc</sub>  | V <sub>GE</sub> = 15 V                                                  | =    | 580    | 670  |       |
| Turn-on switching loss                                                               | E <sub>on</sub>  | I <sub>C</sub> = 200 A, V <sub>CC</sub> = 480 V, V <sub>GF</sub> = 15 V | -    | 30     | -    |       |
| Turn-off switching loss                                                              | E <sub>off</sub> | $R_g = 10 \Omega$                                                       | =    | 50     | -    | mJ    |
| Total switching loss                                                                 | E <sub>ts</sub>  | Freewheeling diode: 30EPH06, T <sub>J</sub> = 25 °C                     | -    | 80     | -    |       |
| Turn-on switching loss                                                               | E <sub>on</sub>  | I <sub>C</sub> = 200 A, V <sub>CC</sub> = 480 V, V <sub>GE</sub> = 15 V | -    | 34     | -    |       |
| Turn-off switching loss                                                              | E <sub>off</sub> | $R_g = 10 \Omega$                                                       | =    | 104    | -    | mJ    |
| Total switching loss                                                                 | E <sub>ts</sub>  | Freewheeling diode: 30EPH06, T <sub>J</sub> = 125 °C                    | =    | 138    | 151  |       |
| Input capacitance                                                                    | C <sub>ies</sub> | V <sub>GF</sub> = 0 V                                                   | -    | 32 500 | -    |       |
| Output capacitance                                                                   | C <sub>oes</sub> | $V_{CC} = 30 \text{ V}$                                                 | -    | 2080   | -    | pF    |
| Reverse transfer capacitance                                                         | C <sub>res</sub> | f = 1.0 MHz                                                             | -    | 380    | -    |       |

| THERMAL AND MECHANICAL SPECIFICATIONS |                          |                   |      |      |      |       |
|---------------------------------------|--------------------------|-------------------|------|------|------|-------|
| PARAMETER                             |                          | SYMBOL            | MIN. | TYP. | MAX. | UNITS |
| Operating junction temperature ra     | T <sub>J</sub>           | -40               | -    | 150  | • °C |       |
| Storage temperature range             | T <sub>Stg</sub>         | -40               | -    | 125  |      |       |
| Junction to case per leg              |                          | R <sub>thJC</sub> | -    |      | 0.15 | °C/W  |
| Case to sink                          |                          | R <sub>thCS</sub> | -    | 0.1  | -    | C/VV  |
| Mounting torque                       | case to heatsink         |                   | -    | -    | 4    | Nm    |
|                                       | case to terminal 1, 2, 3 |                   | -    |      | 3    | INITI |
| Weight                                |                          |                   | -    | 185  | -    | g     |

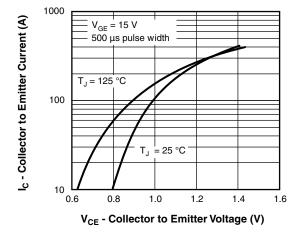



Fig. 1 - Typical Output Characteristics

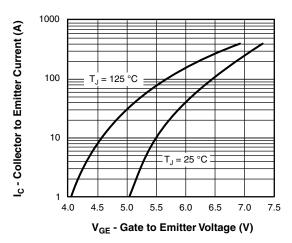



Fig. 2 - Typical Transfer Characteristics

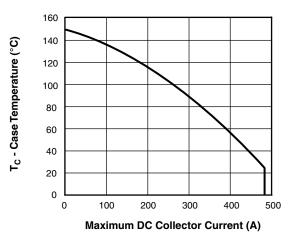



Fig. 3 - Case Temperature vs. Maximum Collector Current

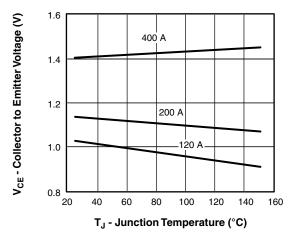



Fig. 4 - Typical Collector to Emitter Voltage vs.
Junction Temperature

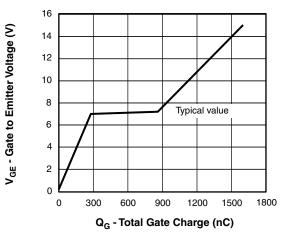



Fig. 5 - Typical Gate Charge vs. Gate to Emitter Voltage

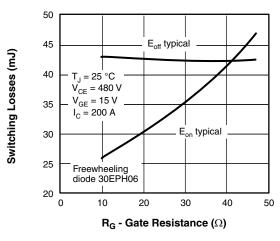



Fig. 6 - Typical Switching Losses vs. Gate Resistance

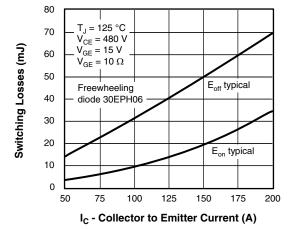
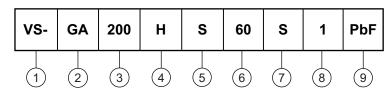
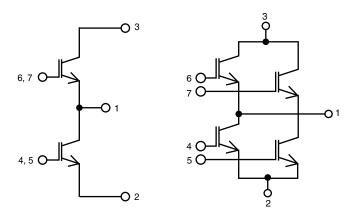




Fig. 7 - Typical Switching Losses vs. Collector to Emitter Current




#### **ORDERING INFORMATION TABLE**

#### **Device code**

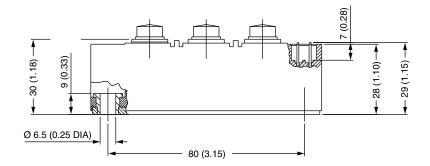


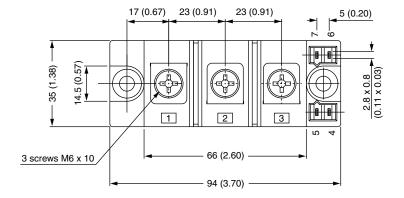
- 1 Vishay Semiconductors product
- 2 Essential part number IGBT modules
- 3 Current rating (200 = 200 A)
- Circuit configuration (H = half bridge without f/w diode)
- 5 INT-A-PAK
- Voltage code (60 = 600 V)
- 7 Speed/type (S = standard speed IGBT)
- 8 Assy location Italy
- 9 None = standard production; PbF = lead (Pb)-free

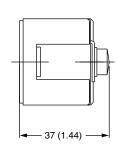
#### **CIRCUIT CONFIGURATION**



**Functional Diagram** 


**Electrical Diagram** 

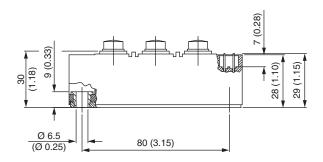

| LINKS TO RELATED DOCUMENTS |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| Dimensions                 | www.vishay.com/doc?95173 |  |  |  |  |

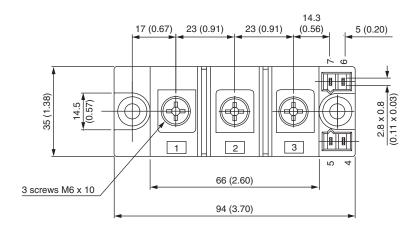


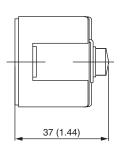

# **INT-A-PAK IGBT/Thyristor**

#### **DIMENSIONS** in millimeters (inches)






## **INT-A-PAK IGBT**

#### **DIMENSIONS** in millimeters (inches)









## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.