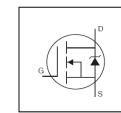


HEXFET[®] Power MOSFET

55V


8.0mΩ

89A

42A

Features

- Advanced Process Technology
- Logic-Level
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

V_{DSS}

R_{DS(on)}

D (Silicon Limited)

D (Package Limited)

max.

G	D	S
Gate	Drain	Source

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

Base part number	Dookogo Tupo	Standard Pack		Ordershie Part Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
	D Dek	Tube	75	AUIRLR3705Z	
AUIRLR3705Z	D-Pak	Tape and Reel Left	3000	AUIRLR3705ZTRL	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	89	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	63	_
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	42	A
I _{DM}	Pulsed Drain Current ①	360	
P _D @T _C = 25°C	Maximum Power Dissipation	130	W
	Linear Derating Factor	0.88	W/°C
V _{GS}	Gate-to-Source Voltage	± 16	V
E _{AS} Single Pulse Avalanche Energy (Thermally Limited) ⁽²⁾ 110		110	
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value 6	190	mJ
I _{AR}	Avalanche Current ①	See Fig.15,16, 12a, 12b	A
E _{AR} Repetitive Avalanche Energy ©			mJ
TJ	Operating Junction and	-55 to + 175	
T _{STG} Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case ®		1.14	
$R_{ ext{ heta}JA}$	Junction-to-Ambient (PCB Mount) 🗇		50	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.053		V/°C	Reference to 25° C, I _D = 1mA
			6.5	8.0		V _{GS} = 10V, I _D = 42A ③
R _{DS(on)}	Static Drain-to-Source On-Resistance			11	mΩ	V _{GS} = 5.0V, I _D = 34A ③
				12		V _{GS} = 4.5V, I _D = 21A ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	89			S	V _{DS} = 25V, I _D = 42A
	Drain-to-Source Leakage Current			20	μA	V _{DS} = 55V, V _{GS} = 0V
IDSS				250	μΑ	V _{DS} = 55V,V _{GS} = 0V,T _J =125°C
	Gate-to-Source Forward Leakage			200	20	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	nA	V _{GS} = -16V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q _g	Total Gate Charge		44	66		I _D = 42A	
Q_{gs}	Gate-to-Source Charge		13		nC	V _{DS} = 44V	
Q_{gd}	Gate-to-Drain Charge		22			V _{GS} = 5.0V ③	
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 28V	
t _r	Rise Time		150		-	I _D = 42A	
t _{d(off)}	Turn-Off Delay Time		33		ns	R _G = 4.2Ω	
t _f	Fall Time		70			V _{GS} = 5.0V3	
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)	
Ls	Internal Source Inductance		7.5			from package and center of die contact	
C _{iss}	Input Capacitance		2900			V _{GS} = 0V	
C _{oss}	Output Capacitance		420			V _{DS} = 25V	
C _{rss}	Reverse Transfer Capacitance		230		pF	f = 1.0MHz	
C _{oss}	Output Capacitance		1550		рі	$V_{GS} = 0V, V_{DS} = 1.0V f = 1.0MHz$	
C _{oss}	Output Capacitance		320			$V_{GS} = 0V, V_{DS} = 44V f = 1.0MHz$	
C _{oss eff.}	Effective Output Capacitance		500			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V \oplus$	
Diode Chara	acteristics						
	Parameter	Min.	Тур.	Max.	Units	Conditions	
ls	Continuous Source Current (Body Diode)			42		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			360	A	integral reverse p-n junction diode.	
V/	Diada Famuard Valtaria		1	10	V	$T = 25^{\circ}C + 2424 + 424 = 01/3$	

Diode Forward Voltage $\begin{array}{l} T_J = 25^{\circ}C, I_S = 42A, \ V_{GS} = 0V \ (3) \\ T_J = 25^{\circ}C, \ I_F = 42A, \ V_{DD} = 28V \end{array}$ 1.3 V V_{SD} Reverse Recovery Time 21 42 ns lrr **Reverse Recovery Charge** 14 28 nC di/dt = 100A/µs ③ Qrr Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by L_S+L_D)

Notes:

- $\odot\;$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 0.12mH, R_G = 25 Ω , I_{AS} = 42A, V_{GS} = 10V. Part not recommended for use above this value.
- O C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}
- S Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- [©] This value determined from sample failure population, starting $T_J = 25$ °C, L = 0.12mH, R_G = 25Ω, I_{AS} = 42A, V_{GS} = 10V.
- ⑦ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- $\label{eq:rescaled} \circledast \ \ \mathsf{R}_{\theta} \text{ is measured at } \mathsf{T}_{\mathsf{J}} \text{ approximately } 90^\circ C.$

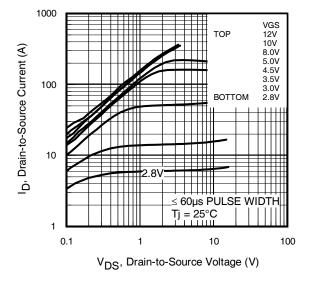


Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics

 V_{DS} , Drain-to-Source Voltage (V)

≤ 60µs PULSE WIDTH

100

10

Tj = 175°C

1000

100

10

1

0.1

I_D, Drain-to-Source Current (A)

TOP

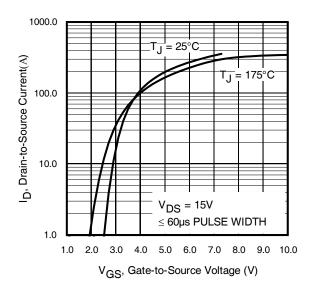
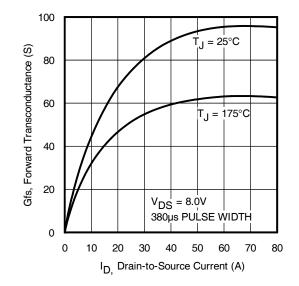
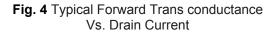
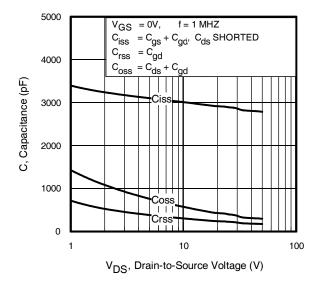
BOTTOM

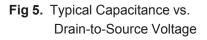
VGS 12V

10V 8.0V

5.0V 4.5V 3.5V 3.0V 2.8V

1


Fig. 3 Typical Transfer Characteristics

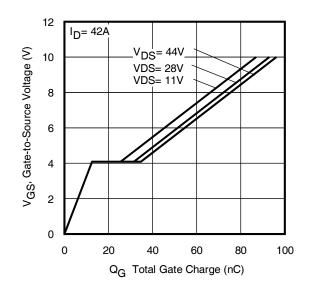


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

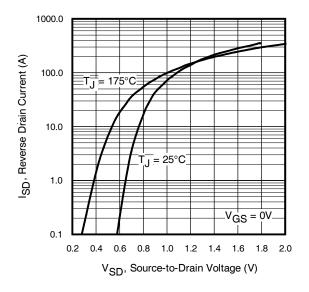


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

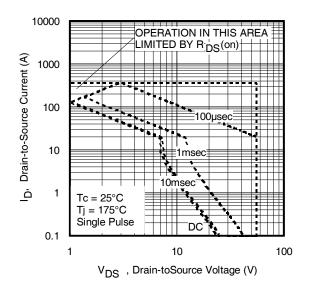
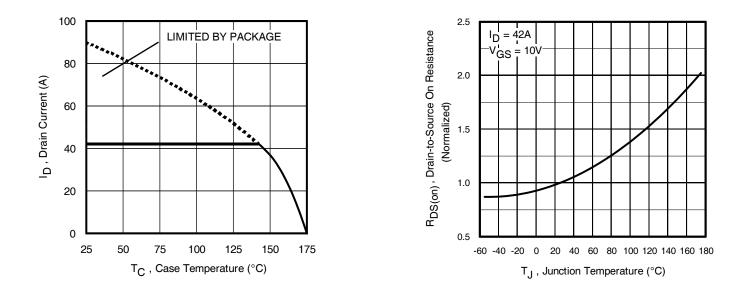
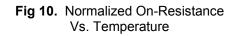




Fig 8. Maximum Safe Operating Area

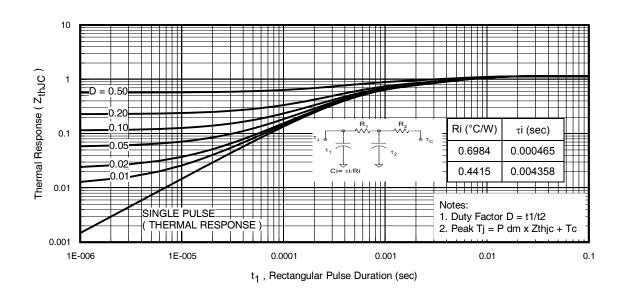


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

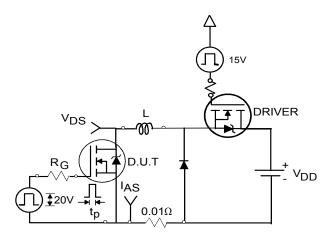
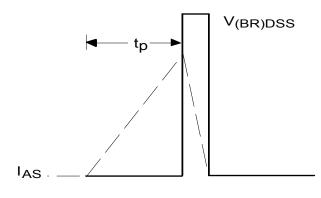
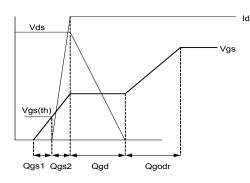




Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Gate Charge Waveform

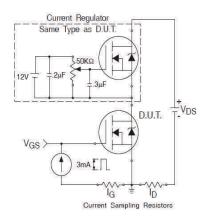


Fig 13b. Gate Charge Test Circuit

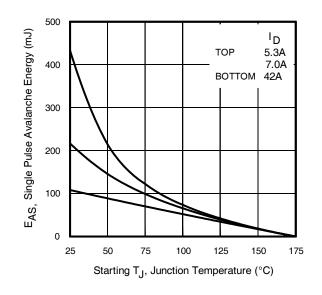


Fig 12c. Maximum Avalanche Energy vs. Drain Current

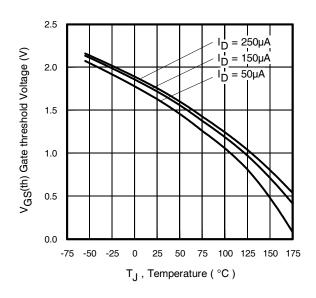


Fig 14. Threshold Voltage Vs. Temperature

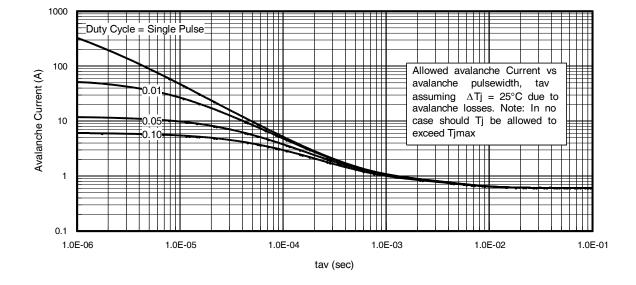
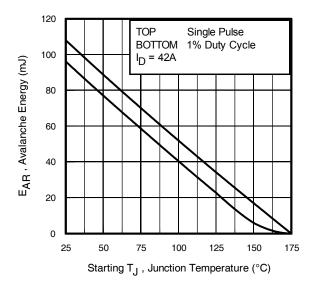
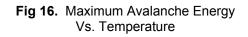




Fig 15. Typical Avalanche Current Vs. Pulse width

Notes on Repetitive Avalanche Curves , Figures 15, 16:

(For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

tav = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D (ave)} &= 1/2 \; (\; 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \; \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \; \textbf{[} 1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th} \textbf{]} \\ \textbf{E}_{AS (AR)} &= \textbf{P}_{D (ave)} \cdot \textbf{t}_{av} \end{split}$$

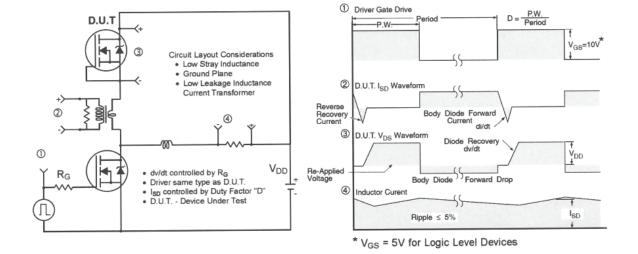


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

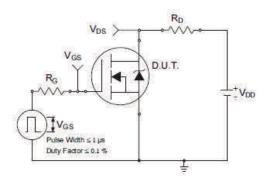
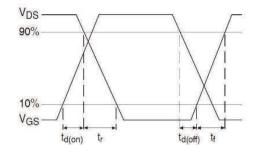
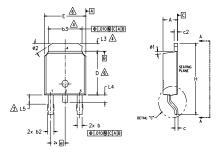
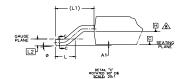
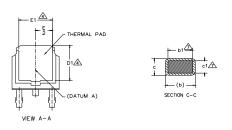


Fig 18a. Switching Time Test Circuit


Fig 18b. Switching Time Waveforms



D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

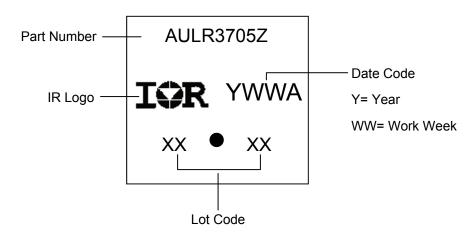
- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN 15.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- A- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- PLANE H. 2AA.

S Y					
Ň		DIMEN	SIONS		N
B O	MILLIMETERS INCHES				Ŭ
L	MIN.	MAX.	MIN.	MAX.	Ē
А	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
b	0.64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1.14	.030	.045	
b3	4.95	5.46	.195	.215	4
с	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Е	6.35	6.73	.250	.265	6
E1	4.32	-	.170	-	4
е	2.29	BSC	.090	BSC	
н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1.14	1.52	.045	.060	3
ø	0.	10 °	0.	10 °	
ø1	0.	15 °	0.	15°	
ø2	25'	35*	25*	35*	

LEAD ASSIGNMENTS

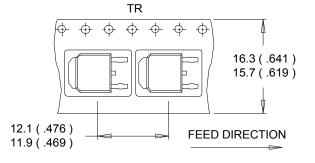
<u>HEXFET</u>

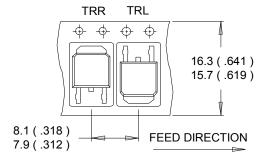
1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN


IGBT & CoPAK

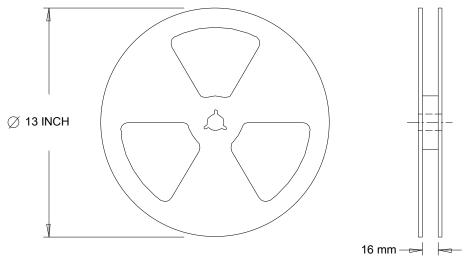
1.- GATE

2.- COLLECTOR 3.- EMITTER


4.- COLLECTOR


D-Pak (TO-252AA) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES : 1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

			Automotive (per AEC-Q101)		
			is part number(s) passed Automotive qualification. Infineon's onsumer qualification level is granted by extension of the higher el.		
Moisture	ture Sensitivity Level D-Pak MSL1				
			Class M4 (+/- 425V) [†]		
	Machine Model		AEC-Q101-002		
	Liveran Dady Madal		Class H1C (+/-2000V) [†]		
ESD	Human Body Model		AEC-Q101-001		
			Class C5 (+/-1125V) [†]		
Charged Device Model		AEC-Q101-005			
RoHS Compliant			Yes		

+ Highest passing voltage.

Revision History

Date	Comments			
12/14/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. Corrected typo R_{0JA} (PCB mount) from "40°C/W" to "50°C/W" on page 1. 			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.