PSMN4R4-80PS

N-channel 80 V, 4.1 mΩ standard level FET

Rev. 01 — 18 June 2009

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for standard level gate drive sources

1.3 Applications

- DC DC converters
- Load switch

- Motor control
- Server power supplies

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I_D	drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see <u>Figure 1</u> ; see <u>Figure 3</u>		-	-	100	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	306	W
Dynamic characteristics							
Q_{GD}	gate-drain charge	V_{GS} = 10 V; I_D = 80 A; V_{DS} = 40 V; see <u>Figure 14</u> ; see <u>Figure 15</u>		-	25	-	nC
Static ch	Static characteristics						
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I_D = 15 A; T_j = 25 °C; see <u>Figure 6</u> ; see <u>Figure 13</u>	[1]	-	3.3	4.1	mΩ

^[1] Measured 3 mm from package.

2. Pinning information

Table 2. Pinning information

		,		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		_
2	D	drain	mb	D
3	S	source	705	
mb	D	drain		mbb076 S
			SOT78 (TO-220AB;SC-46)	

3. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
PSMN4R4-80PS	TO-220AB; SC-46	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB $$	SOT78			

Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	80	V
V_{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	80	V
V_{GS}	gate-source voltage		-20	20	V
I_D	drain current	V _{GS} = 10 V; T _{mb} = 100 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	100	Α
		V _{GS} = 10 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	100	Α
I _{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	-	680	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	306	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dra	ain diode				
Is	source current	$T_{mb} = 25 ^{\circ}C$	-	100	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	680	Α
Avalanche	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; V_{sup} ≤ 80 V; R_{GS} = 50 Ω; unclamped	-	591	mJ

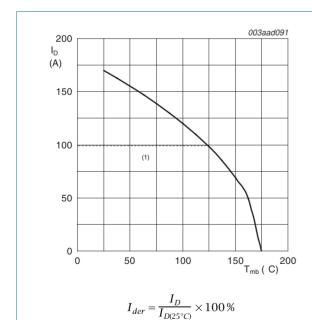
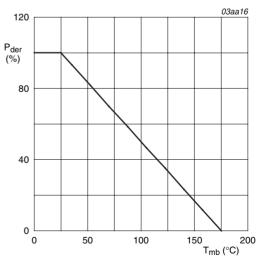
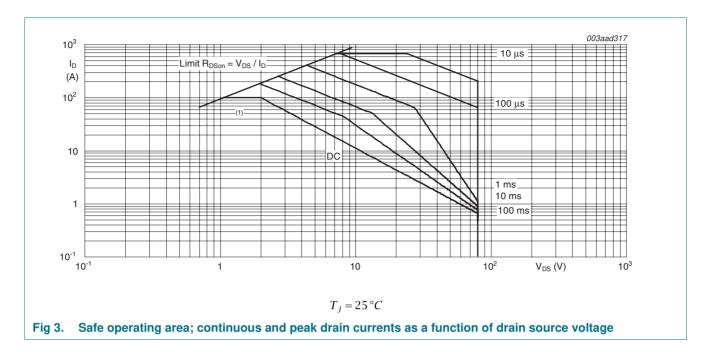
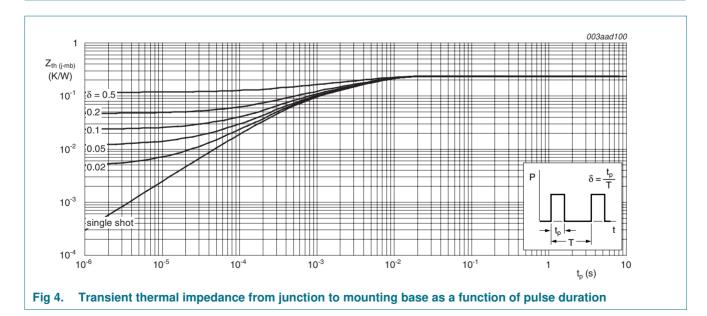




Fig 1. Normalized continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$


Fig 2. Normalized total power dissipation as a function of mounting base temperature

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	0.23	0.49	K/W

6. Characteristics

Table 6. Characteristics

Max	Тур Мах	Unit
_		
		V
-		V
-		V
4.6	- 4.6	V
4	3 4	V
10	- 10	μΑ
200	- 200	μΑ
100	- 100	nΑ
100	- 100	nΑ
9.47	7.6 9.47	mΩ
6.8	5.5 6.8	mΩ
4.1	3.3 4.1	mΩ
-	1 -	Ω
-	112 -	nC
-	125 -	nC
-	39 -	nC
-	24 -	nC
-	15 -	nC
-	25 -	nC
; -	4.65 -	V
0 -	8400 -	pF
-	700 -	pF
-	336 -	рF
, -	34.7 -	ns
-	38.1 -	ns
	66 -	ns
-		
7	125 39 24 15 25 4.65 840 700 336 34.1	- - - 5 - 0 - - 7 - 1 -

PSMN4R4-80PS_1 © Nexperia B.V. 2017. All rights reserved

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Source-dr	ain diode					
V_{SD}	source-drain voltage	I_S = 25 A; V_{GS} = 0 V; T_j = 25 °C; see <u>Figure 17</u>	-	0.8	1.2	V
t _{rr}	reverse recovery time	$I_S = 25 \text{ A}$; $dI_S/dt = 100 \text{ A/}\mu\text{s}$; $V_{GS} = 0 \text{ V}$;	-	59	-	ns
Qr	recovered charge	$V_{DS} = 20 \text{ V}$	-	130	-	nC

- [1] Tested to JEDEC standards where applicable.
- [2] Measured 3 mm from package.

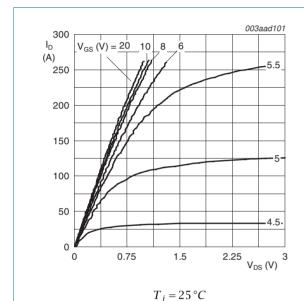
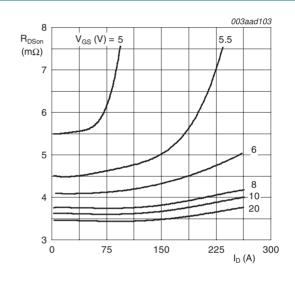



Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

 $T_j = 25 \,^{\circ}C; I_D = 15A$

Fig 6. Drain-source on-state resistance as a function of drain current; typical values

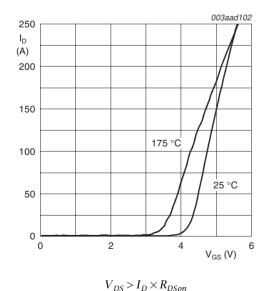
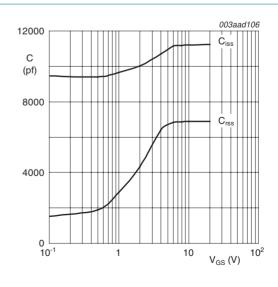
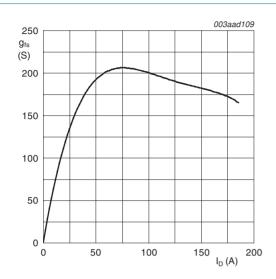




Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

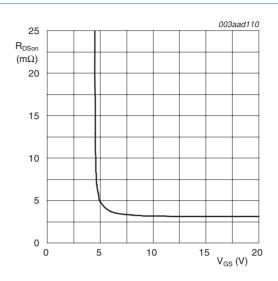

 $V_{DS}=0\,V; f=1MHz$

Fig 8. Input and reverse transfer capacitances as a function of gate-source voltage; typical values

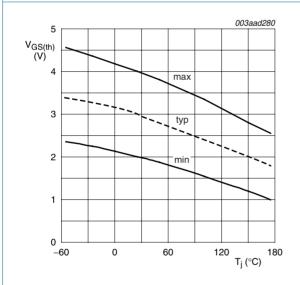

 $T_{j} = 25 \,^{\circ}C; V_{DS} = 25 V$

Fig 9. Forward transconductance as a function of drain current; typical values

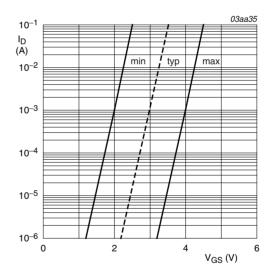

$$T_j = 25 \,{}^{\circ}C; I_D = 15A$$

Fig 10. Drain-source on-state resistance as a function of gate-source voltage; typical values

 $I_D = 1 \, mA; V_{DS} = V_{GS}$

Fig 11. Gate-source threshold voltage as a function of junction temperature

$$T_j = 25 \,^{\circ}C; V_{DS} = 5V$$

Fig 12. Sub-threshold drain current as a function of gate-source voltage

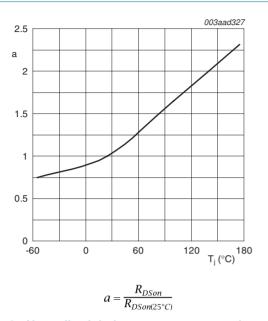


Fig 13. Normailzed drain-source on-state resistance factor as a function of junction temperature

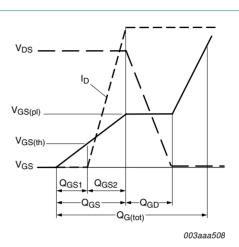


Fig 14. Gate charge waveform definitions

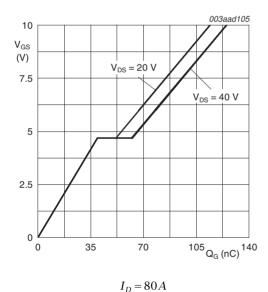


Fig 15. Gate-source voltage as a function of gate charge; typical values

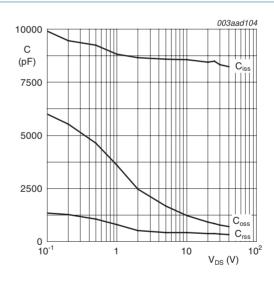
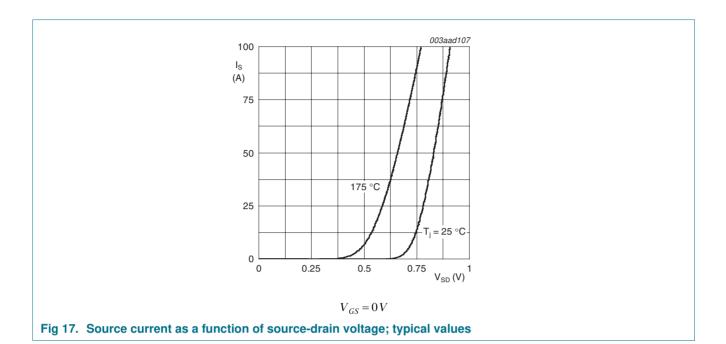



Fig 16. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

 $V_{GS} = 0V; f = 1MHz$

7. Package outline

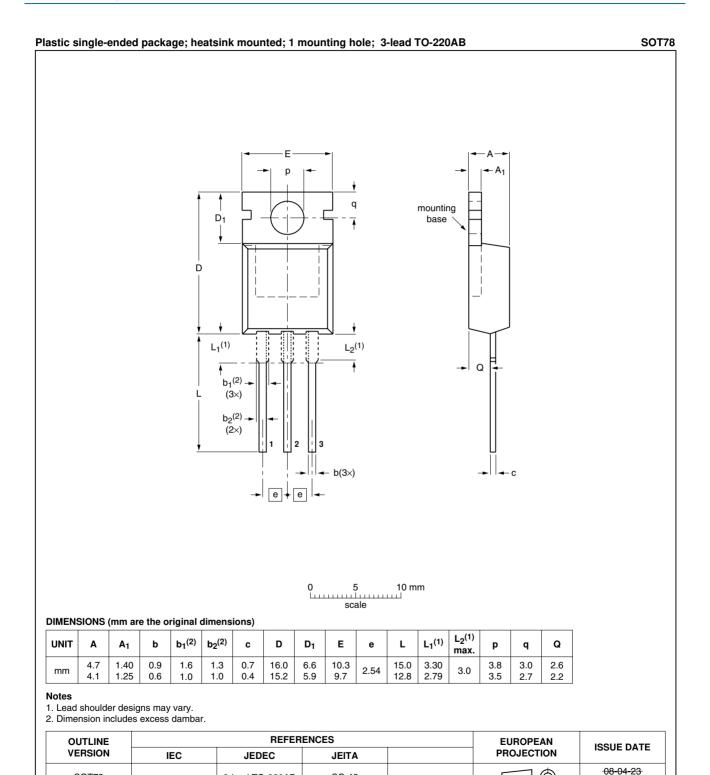


Fig 18. Package outline SOT78 (TO-220AB)

PSMN4R4-80PS_1 © Nexperia B.V. 2017. All rights reserved

SC-46

3-lead TO-220AB

SOT78

08-06-13

11 of 13

N-channel 80 V, 4.1 m Ω standard level FET

Revision history

Table 7. **Revision history**

Product data sheet

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN4R4-80PS_1	20090618	Product data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

PSMN4R4-80PS 1 © Nexperia B.V. 2017. All rights reserved

PSMN4R4-80PS

N-channel 80 V, 4.1 m Ω standard level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics4
6	Characteristics5
7	Package outline
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks12
10	Contact information