

N-channel 100 V 9.6 m $\Omega$  standard level MOSFET in D2PAK

Rev. 2 — 2 March 2012

Product data sheet

#### **Product profile** 1.

### 1.1 General description

Standard level N-channel MOSFET in a D2PAK package qualified to 175C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

### 1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive

### 1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

### 1.4 Quick reference data

| Table 1.             | Quick reference data                               |                                                                                                                                                                               |     |      |     |      |
|----------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Symbol               | Parameter                                          | Conditions                                                                                                                                                                    | Min | Тур  | Мах | Unit |
| V <sub>DS</sub>      | drain-source voltage                               | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C                                                                                                                               | -   | -    | 100 | V    |
| I <sub>D</sub>       | drain current                                      | $T_{mb}$ = 25 °C; $V_{GS}$ = 10 V; see <u>Figure 1</u>                                                                                                                        | -   | -    | 89  | А    |
| P <sub>tot</sub>     | total power dissipation                            | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                                                                                  | -   | -    | 211 | W    |
| Tj                   | junction temperature                               |                                                                                                                                                                               | -55 | -    | 175 | °C   |
| Static cha           | aracteristics                                      |                                                                                                                                                                               |     |      |     |      |
| R <sub>DSon</sub>    | drain-source on-state resistance                   | V <sub>GS</sub> = 10 V; I <sub>D</sub> = 15 A; T <sub>j</sub> = 25 °C;<br>see <u>Figure 13</u>                                                                                | -   | 8.16 | 9.6 | mΩ   |
| Dynamic              | characteristics                                    |                                                                                                                                                                               |     |      |     |      |
| Q <sub>GD</sub>      | gate-drain charge                                  | $V_{GS}$ = 10 V; $I_{D}$ = 60 A; $V_{DS}$ = 50 V;                                                                                                                             | -   | 23   | -   | nC   |
| Q <sub>G(tot)</sub>  | total gate charge                                  | see Figure 14;see Figure 15                                                                                                                                                   | -   | 82   | -   | nC   |
|                      | e ruggedness                                       |                                                                                                                                                                               |     |      |     |      |
| E <sub>DS(AL)S</sub> | non-repetitive<br>drain-source<br>avalanche energy | $\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ ^{\circ}C; \ I_{D} = 89 \ A; \\ V_{sup} \leq 100 \ V; \ unclamped; \ R_{GS} = 50 \ \Omega \end{array}$ | -   | -    | 177 | mJ   |

# nexperia

### N-channel 100 V 9.6 m $\Omega$ standard level MOSFET in D2PAK

### 2. Pinning information

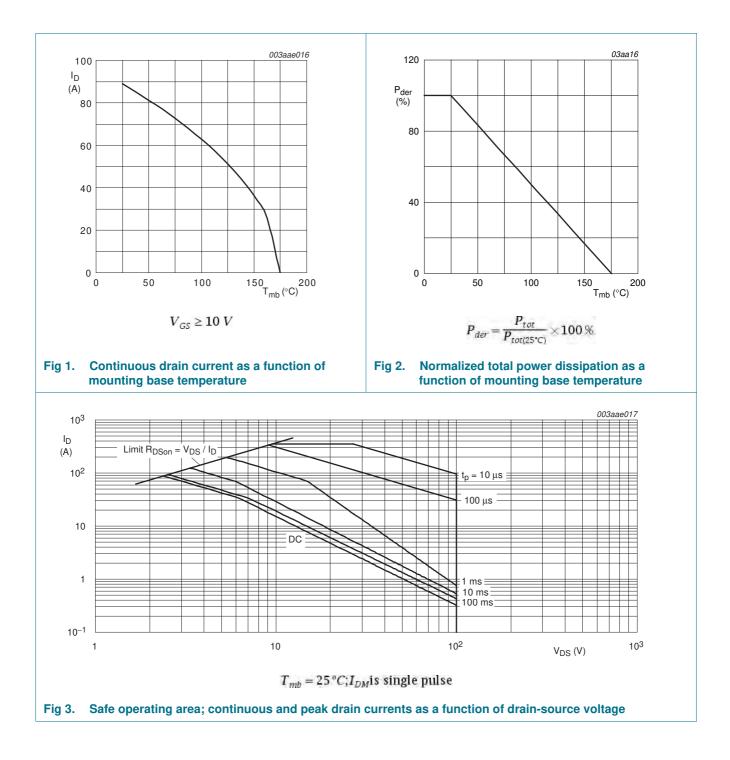
| Table 2. | Pinning | information                          |                    |                |
|----------|---------|--------------------------------------|--------------------|----------------|
| Pin      | Symbol  | Description                          | Simplified outline | Graphic symbol |
| 1        | G       | gate                                 |                    | _              |
| 2        | D       | drain <sup>[1]</sup>                 | mb                 |                |
| 3        | S       | source                               |                    |                |
| mb       | D       | mounting base;<br>connected to drain |                    | mbb076 S       |
|          |         |                                      | SOT404 (D2PAK)     |                |

[1] It is not possible to make connection to pin 2.

### 3. Ordering information

### Table 3.Ordering information

| Type number   | Package |                                                                                     |         |
|---------------|---------|-------------------------------------------------------------------------------------|---------|
|               | Name    | Description                                                                         | Version |
| PSMN9R5-100BS | D2PAK   | plastic single-ended surface-mounted package (D2PAK);<br>3 leads (one lead cropped) | SOT404  |


### 4. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                                       | Conditions                                                                                                      | Min | Max | Unit |
|----------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----|-----|------|
| V <sub>DS</sub>      | drain-source voltage                            | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C                                                                 | -   | 100 | V    |
| V <sub>DGR</sub>     | drain-gate voltage                              | $T_j \le 175 \text{ °C}; T_j \ge 25 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$                                    | -   | 100 | V    |
| V <sub>GS</sub>      | gate-source voltage                             |                                                                                                                 | -20 | 20  | V    |
| I <sub>D</sub>       | drain current                                   | $V_{GS}$ = 10 V; $T_{mb}$ = 100 °C; see <u>Figure 1</u>                                                         | -   | 63  | А    |
|                      |                                                 | $V_{GS}$ = 10 V; $T_{mb}$ = 25 °C; see <u>Figure 1</u>                                                          | -   | 89  | А    |
| I <sub>DM</sub>      | peak drain current                              | pulsed; t <sub>p</sub> ≤ 10 µs; T <sub>mb</sub> = 25 °C;<br>see <u>Figure 3</u>                                 | -   | 355 | А    |
| P <sub>tot</sub>     | total power dissipation                         | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                    | -   | 211 | W    |
| T <sub>stg</sub>     | storage temperature                             |                                                                                                                 | -55 | 175 | °C   |
| Tj                   | junction temperature                            |                                                                                                                 | -55 | 175 | °C   |
| T <sub>sld(M)</sub>  | peak soldering temperature                      |                                                                                                                 | -   | 260 | °C   |
| Source-drain         | diode                                           |                                                                                                                 |     |     |      |
| ls                   | source current                                  | T <sub>mb</sub> = 25 °C                                                                                         | -   | 89  | А    |
| I <sub>SM</sub>      | peak source current                             | pulsed; $t_p \le 10 \ \mu s$ ; $T_{mb} = 25 \ ^{\circ}C$                                                        | -   | 355 | А    |
| Avalanche ru         | ggedness                                        |                                                                                                                 |     |     |      |
| E <sub>DS(AL)S</sub> | non-repetitive drain-source<br>avalanche energy | $V_{GS}$ = 10 V; $T_{j(init)}$ = 25 °C; $I_D$ = 89 A;<br>$V_{sup} \le$ 100 V; unclamped; $R_{GS}$ = 50 $\Omega$ | -   | 177 | mJ   |

# PSMN9R5-100BS



### N-channel 100 V 9.6 mΩ standard level MOSFET in D2PAK

#### **Thermal characteristics** 5.

| Table 5.             | Inermal characteristics                           |                                                       |     |      |      |      |
|----------------------|---------------------------------------------------|-------------------------------------------------------|-----|------|------|------|
| Symbol               | Parameter                                         | Conditions                                            | Min | Тур  | Мах  | Unit |
| $R_{th(j-mb)}$       | thermal resistance from junction to mounting base | see Figure 4                                          | -   | 0.38 | 0.71 | K/W  |
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient       | Minimum footprint; mounted on a printed circuit board | -   | 50   | -    | K/W  |



#### Table 5 The wood all encode visiting

### N-channel 100 V 9.6 mΩ standard level MOSFET in D2PAK

### 6. Characteristics

| Table 6.               | Characteristics                      |                                                                                                                                             |     |      |      |      |
|------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| Symbol                 | Parameter                            | Conditions                                                                                                                                  | Min | Тур  | Max  | Unit |
| Static cha             | aracteristics                        |                                                                                                                                             |     |      |      |      |
| V <sub>(BR)DSS</sub>   | drain-source                         | $I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$                                                                         | 90  | -    | -    | V    |
|                        | breakdown voltage                    | $I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$                                                                          | 100 | -    | -    | V    |
| V <sub>GS(th)</sub>    | gate-source threshold<br>voltage     | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$<br>see <u>Figure 10</u> ; see <u>Figure 11</u>                                 | 1   | -    | -    | V    |
|                        |                                      | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$<br>see <u>Figure 10</u> ; see <u>Figure 11</u>                                  | 2   | 3    | 4    | V    |
|                        |                                      | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$<br>see <u>Figure 10</u> ; see <u>Figure 11</u>                                 | -   | -    | 4.8  | V    |
| I <sub>DSS</sub>       | drain leakage current                | $V_{DS}$ = 100 V; $V_{GS}$ = 0 V; $T_j$ = 125 °C                                                                                            | -   | -    | 100  | μA   |
|                        |                                      | $V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$                                                                         | -   | 0.02 | 4    | μA   |
| I <sub>GSS</sub>       | gate leakage current                 | $V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$                                                                          | -   | 10   | 100  | nA   |
|                        |                                      | $V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$                                                                         | -   | 10   | 100  | nA   |
| R <sub>DSon</sub>      | drain-source on-state resistance     | $V_{GS} = 10 \text{ V}; I_D = 15 \text{ A}; T_j = 100 \text{ °C};$<br>see <u>Figure 12</u>                                                  | -   | -    | 17.3 | mΩ   |
|                        |                                      | $V_{GS}$ = 10 V; I <sub>D</sub> = 15 A; T <sub>j</sub> = 175 °C;<br>see <u>Figure 12</u>                                                    | -   | 23.5 | 27.4 | mΩ   |
|                        |                                      | V <sub>GS</sub> = 10 V; I <sub>D</sub> = 15 A; T <sub>j</sub> = 25 °C;<br>see <u>Figure 13</u>                                              | -   | 8.16 | 9.6  | mΩ   |
| R <sub>G</sub>         | internal gate resistance (AC)        | f = 1 MHz                                                                                                                                   | -   | 0.7  | -    | Ω    |
| Dynamic                | characteristics                      |                                                                                                                                             |     |      |      |      |
| Q <sub>G(tot)</sub>    | total gate charge                    | $\begin{split} I_D &= 0 \text{ A};  V_{DS} = 0  V;  V_{GS} = 10  V; \\ \text{see } \frac{\text{Figure } 14}{\text{Figure } 14} \end{split}$ | -   | 67   | -    | nC   |
|                        |                                      | $I_D = 60 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$                                                                         | -   | 82   | -    | nC   |
| Q <sub>GS</sub>        | gate-source charge                   | see Figure 14; see Figure 15                                                                                                                | -   | 21   | -    | nC   |
| Q <sub>GS(th)</sub>    | pre-threshold<br>gate-source charge  | $I_D = 60 \text{ A};  \text{V}_{DS} = 50  \text{V};  \text{V}_{GS} = 3  \text{V};$ see Figure 14                                            | -   | 13.1 | -    | nC   |
| Q <sub>GS(th-pl)</sub> | post-threshold<br>gate-source charge | $I_D = 60 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 14                                                           | -   | 7.8  | -    | nC   |
| Q <sub>GD</sub>        | gate-drain charge                    | $I_D = 60 \text{ A}; V_{DS} = 50 \text{ V}; V_{GS} = 10 \text{ V};$<br>see <u>Figure 14</u> ; see <u>Figure 15</u>                          | -   | 23   | -    | nC   |
| V <sub>GS(pl)</sub>    | gate-source plateau<br>voltage       | V <sub>DS</sub> = 50 V; see <u>Figure 14;</u><br>see <u>Figure 15</u>                                                                       | -   | 4.5  | -    | V    |
| C <sub>iss</sub>       | input capacitance                    | $V_{DS} = 50 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$                                                                           | -   | 4454 | -    | pF   |
| C <sub>oss</sub>       | output capacitance                   | $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{16}$                                                                            | -   | 302  | -    | pF   |
| C <sub>rss</sub>       | reverse transfer capacitance         |                                                                                                                                             | -   | 185  | -    | рF   |
| d(on)                  | turn-on delay time                   | $V_{DS} = 50 \ V; \ R_L = 0.8 \ \Omega; \ V_{GS} = 10 \ V;$                                                                                 | -   | 22   | -    | ns   |
| t <sub>r</sub>         | rise time                            | $R_{G(ext)} = 4.7 \ \Omega; T_j = 25 \ ^{\circ}C$                                                                                           | -   | 25.2 | -    | ns   |
| t <sub>d(off)</sub>    | turn-off delay time                  |                                                                                                                                             | -   | 52.2 | -    | ns   |
| t <sub>f</sub>         | fall time                            |                                                                                                                                             | -   | 22.8 | -    | ns   |
|                        |                                      |                                                                                                                                             |     |      |      |      |

Symbol

# PSMN9R5-100BS

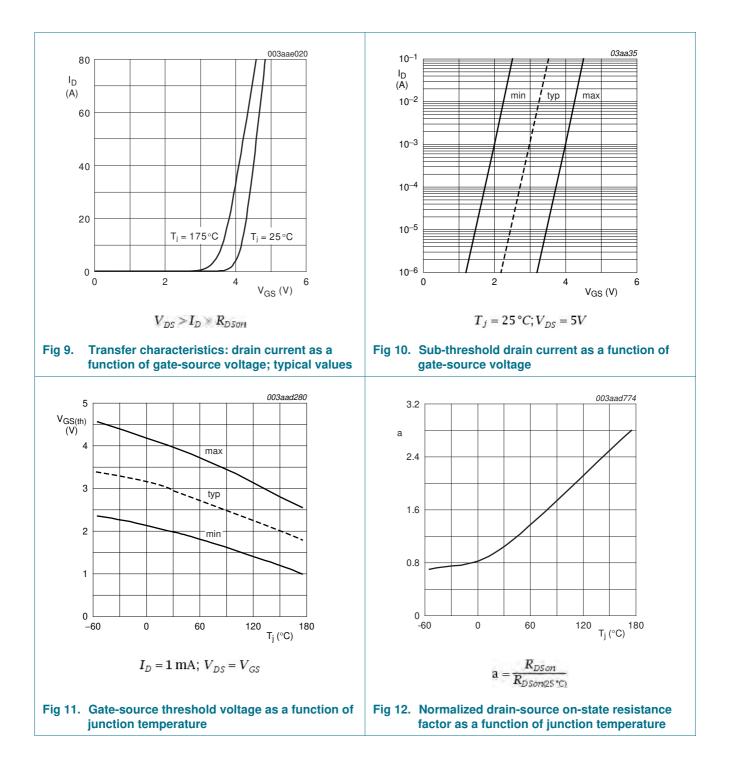
Тур

Unit

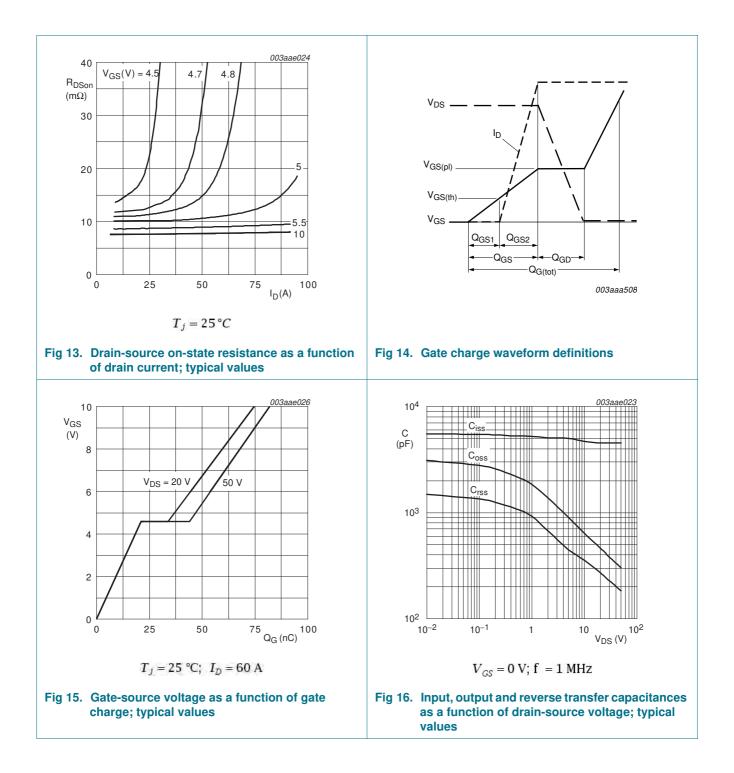
Max

### N-channel 100 V 9.6 mΩ standard level MOSFET in D2PAK

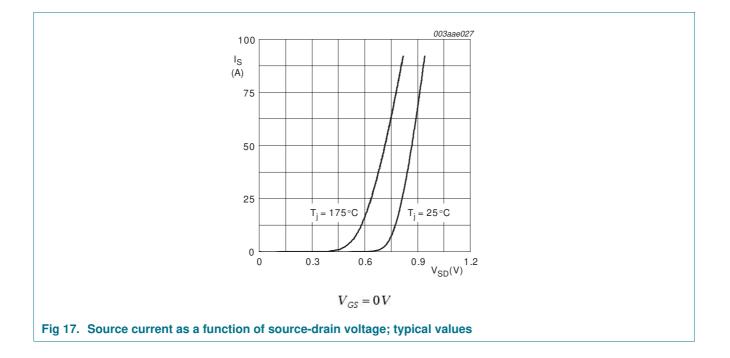
Min


| urce-draii                                                   | luiuue                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                           |        |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|-----------------------------------------------------------|--------|
| D                                                            | source-drain voltage                                                                        | $I_S = 15 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$<br>see Figure 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                  | 0.85                    | 1.2                                                       | V      |
|                                                              | reverse recovery time                                                                       | $I_{S} = 20 \text{ A}; \text{ d}I_{S}/\text{d}t = 100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 100 \text{ A}/\mu\text{s}; \text{ V}_{GS} = 100 \text{ A}/\mu\text{s}; V_{GS} = 100 \text{ A}/\mu\text{s}; V_{GS}$ | = 0 V; -                                                           | 61.5                    | -                                                         | ns     |
|                                                              | recovered charge                                                                            | V <sub>DS</sub> = 50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                  | 157                     | -                                                         | nC     |
|                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                           |        |
| 30                                                           |                                                                                             | 003aae025 8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                         | 003aae022                                                 |        |
| R <sub>DSon</sub><br>(mΩ)                                    |                                                                                             | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                         |                                                           |        |
| (11152)                                                      |                                                                                             | (pF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         | C <sub>iss</sub>                                          |        |
| 24                                                           |                                                                                             | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         |                                                           |        |
| 4                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                           |        |
|                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                           |        |
| 18                                                           |                                                                                             | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         | C <sub>rss</sub>                                          |        |
| H                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         | 133                                                       |        |
| 12                                                           |                                                                                             | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         |                                                           |        |
| 12                                                           |                                                                                             | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                         |                                                           |        |
|                                                              |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                         |                                                           |        |
| 6                                                            |                                                                                             | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |                         |                                                           |        |
| 4                                                            | 8 12                                                                                        | 16 V <sub>GS</sub> (V) 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 6                                                                | 9<br>V                  | 12/ <sub>GS</sub> (V)                                     |        |
| u 5. Dra                                                     | $T_j = 25 \ ^\circ C; I_D = 20$                                                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{DS} = 0V; f =$                                                 |                         | citances                                                  | s as a |
|                                                              | $T_j = 25 \ ^\circ C; I_D = 20$<br>nin-source on-state resist<br>pate-source voltage; typic | A ance as a function Fig 6. Inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{DS} = 0V; f =$<br>ut and reverse trans<br>ction of gate-source | sfer capa               |                                                           |        |
| of g                                                         | in-source on-state resist                                                                   | A ance as a function Fig 6. Inp fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ut and reverse trans                                               | sfer capa<br>e voltage; |                                                           |        |
|                                                              | in-source on-state resist                                                                   | A ance as a function Fig 6. Inp fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ut and reverse trans                                               | sfer capa<br>e voltage; | ; typical                                                 |        |
| 0f ç<br>150<br>g <sub>fs</sub>                               | in-source on-state resist                                                                   | A ance as a function Fig 6. Inp fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | typical                                                   |        |
| of <u>c</u>                                                  | in-source on-state resist                                                                   | A ance as a function fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | typical                                                   |        |
| 0f ç<br>150<br>g <sub>fs</sub>                               | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values<br>Fig 6. Inp<br>fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | typical                                                   |        |
| 0f g<br>150<br>g <sub>fs</sub><br>(S)                        | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values<br>Fig 6. Inp<br>fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | 5<br>4.8                                                  |        |
| 0f g<br>150<br>g <sub>fs</sub><br>(S)                        | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values<br>Fig 6. Inp<br>fun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | 5                                                         |        |
| 0f g<br>150<br>g <sub>fs</sub><br>(S)                        | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | 5<br>4.8<br>4.7                                           |        |
| 0f g<br>150<br>g <sub>fs</sub><br>(S)                        | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | 5<br>4.8                                                  |        |
| of g<br>150<br>g <sub>fs</sub><br>(S)<br>100                 | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | sfer capa<br>e voltage; | 5<br>4.8<br>4.7                                           |        |
| of g<br>150 g <sub>fs</sub> (S) 100                          | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | e voltage;              | 2003aae019<br>5<br>4.8<br>4.7<br>4.5<br>4.3               |        |
| of g<br>9fs<br>(S)<br>100<br>50                              | in-source on-state resist                                                                   | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | e voltage;              | 2003aae019<br>5<br>4.8<br>4.7<br>4.5                      |        |
| of g<br>150 g <sub>fs</sub> (S) 100                          | ain-source on-state resist.                                                                 | A<br>ance as a function<br>cal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ut and reverse trans<br>ction of gate-source                       | e voltage;              | 2003aae019<br>5<br>4.8<br>4.7<br>4.5<br>4.3               |        |
| of g<br>150<br>9 <sub>fs</sub><br>(S)<br>100<br>50<br>0      | ain-source on-state resist.                                                                 | A<br>ance as a function<br>bal values<br>003aae021<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 5.5                                                             | e voltage;              | 2003aae019<br>5<br>4.8<br>4.7<br>4.5<br>4.3<br>6 (V) = 4  |        |
| of g<br>150<br>g <sub>fs</sub><br>(S)<br>100<br>50<br>0<br>0 | 20 40                                                                                       | A<br>ance as a function<br>al values<br>100<br>10<br>10<br>10<br>(A)<br>75<br>50<br>25<br>0<br>25<br>0<br>0<br>10<br>(A)<br>75<br>50<br>25<br>0<br>0<br>0<br>25<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 5.5                                                             | e voltage;              | $\frac{4.8}{4.7}$ $4.5$ $4.3$ $4.5$ $4.3$ $V_{DS}(V)^{2}$ | value  |

#### Table 6. Characteristics ...continued

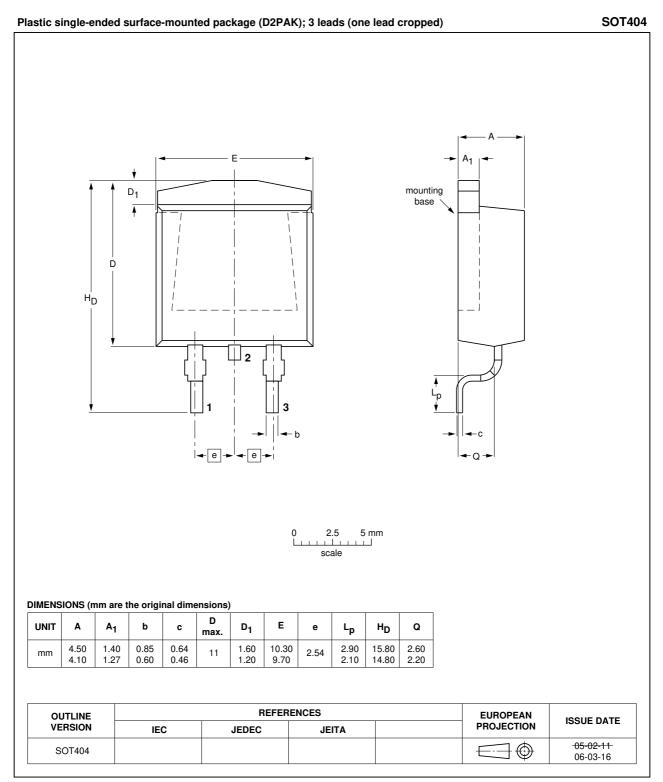

Parameter

Conditions


# PSMN9R5-100BS



# PSMN9R5-100BS




# PSMN9R5-100BS



#### N-channel 100 V 9.6 m $\Omega$ standard level MOSFET in D2PAK

### 7. Package outline



### Fig 18. Package outline SOT404 (D2PAK)

### N-channel 100 V 9.6 mΩ standard level MOSFET in D2PAK

### 8. Revision history

#### Table 7.Revision history

| Document ID       | Release date                         | Data sheet status         | Change notice | Supersedes        |
|-------------------|--------------------------------------|---------------------------|---------------|-------------------|
| PSMN9R5-100BS v.2 | 20120302                             | Product data sheet        | -             | PSMN9R5-100BS v.1 |
| Modifications:    | <ul> <li>Status changed f</li> </ul> | rom objective to product. |               |                   |
|                   | <ul> <li>Various changes</li> </ul>  | to content.               |               |                   |
| PSMN9R5-100BS v.1 | 20111025                             | Objective data sheet      | -             | -                 |

### 9. Legal information

### 9.1 Data sheet status

| Document status[1][2]          | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia.com</u>.

### 9.2 Definitions

**Preview**— The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

**Draft**— The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification**— The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

### 9.3 Disclaimers

Limited warranty and liability— Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* Nexperia.

**Right to make changes**— Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data**— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications**— Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values— Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Product data sheet

PSMN9R5-100BS

#### N-channel 100 V 9.6 m $\Omega$ standard level MOSFET in D2PAK

In the event that customer uses the product for design-in and use in

(a) shall use the product without Nexperia's warranty of the

own risk, and (c) customer fully indemnifies Nexperia for any

standard warranty and Nexperia's product specifications.

between the translated and English versions.

**Trademarks** 

are the property of their respective owners.

9.4

use of the product for automotive applications beyond Nexperia's

Translations- A non-English (translated) version of a document is for

reference only. The English version shall prevail in case of any discrepancy

Notice: All referenced brands, product names, service names and trademarks

automotive applications to automotive specifications and standards, customer

liability, damages or failed product claims resulting from customer design and

product for such automotive applications, use and specifications, and (b)

whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's

Terms and conditions of commercial sale— Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control**— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products— Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

**10. Contact information** 

For more information, please visit:http://www.nexperia.com

For sales office addresses, please send an email to:salesaddresses@nexperia.com

#### N-channel 100 V 9.6 m $\Omega$ standard level MOSFET in D2PAK

### 11. Contents

| 1   | Product profile1         |
|-----|--------------------------|
| 1.1 | General description1     |
| 1.2 | Features and benefits1   |
| 1.3 | Applications1            |
| 1.4 | Quick reference data1    |
| 2   | Pinning information2     |
| 3   | Ordering information2    |
| 4   | Limiting values2         |
| 5   | Thermal characteristics4 |
| 6   | Characteristics5         |
| 7   | Package outline10        |
| 8   | Revision history11       |
| 9   | Legal information12      |
| 9.1 | Data sheet status        |
| 9.2 | Definitions12            |
| 9.3 | Disclaimers              |
| 9.4 | Trademarks               |
| 10  | Contact information13    |