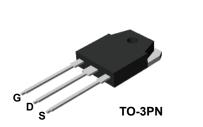
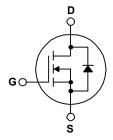
ON Semiconductor®

FCA76N60N N-Channel SupreMOS[®] MOSFET

600 V, 76 A, 36 m Ω

Features


- $R_{DS(on)}$ = 28 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 38 A
- Ultra Low Gate Charge (Typ. Q_g = 218 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 914 pF)
- 100% Avalanche Tested
- RoHS Compliant


Application

- Solar Inverter
- AC-DC Power Supply

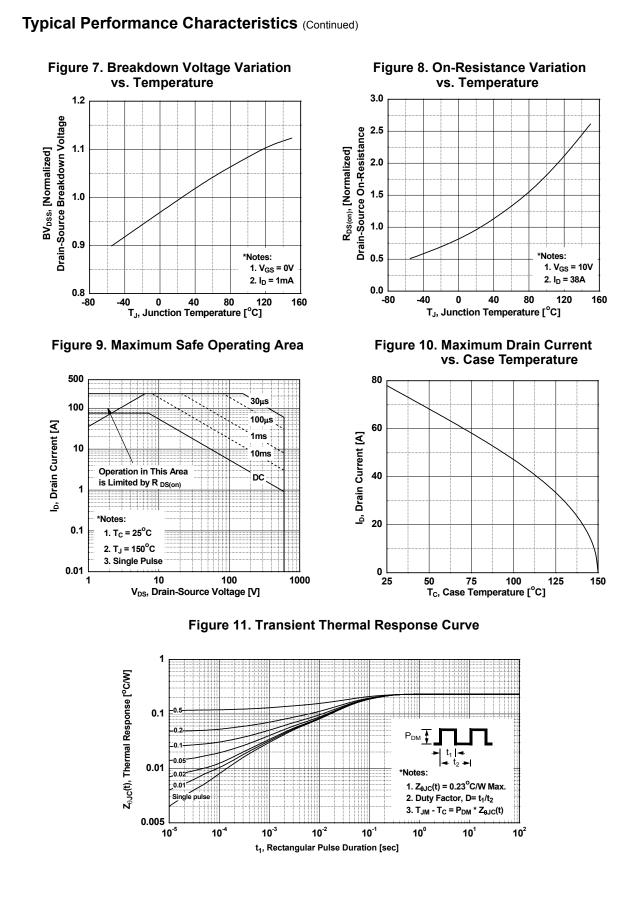
Description

The SupreMOS[®] MOSFET is ON Semiconductor's next generation of high voltage super-junction (SJ) technology employing a deep trench filling process that differentiates it from the conventional SJ MOSFETs. This advanced technology and precise process control provides lowest Rsp on-resistance, superior switching performance and ruggedness. SupreMOS MOSFET is suitable for high frequency switching power converter applications such as PFC, server/telecom power, FPD TV power, ATX power, and industrial power applications.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		FCA76N60N	Unit			
V _{DSS}	Drain to Source Voltage	600	V			
V _{GSS}	Gate to Source Voltage			±30	V	
ID	Drain Current	- Continuous (T _C = 25 ^o C)		76	•	
		- Continuous (T _C = 100 ^o C)		48.1	— A	
I _{DM}	Drain Current	- Pulsed (Note 1)	228	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			8022	mJ	
I _{AR}	Avalanche Current (N			76	А	
E _{AR}	Repetitive Avalanche Ene	rgy (Note 1)	5.40	mJ	
dv/dt	MOSFET dv/dt Ruggedness (Note 3)			100	V/ns	
	Peak Diode Recovery dv/dt			12		
P _D	Deven Dississeties	$(T_{\rm C} = 25^{\rm o}{\rm C})$		543	W	
	Power Dissipation	- Derate Above 25°C		5.40	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C	

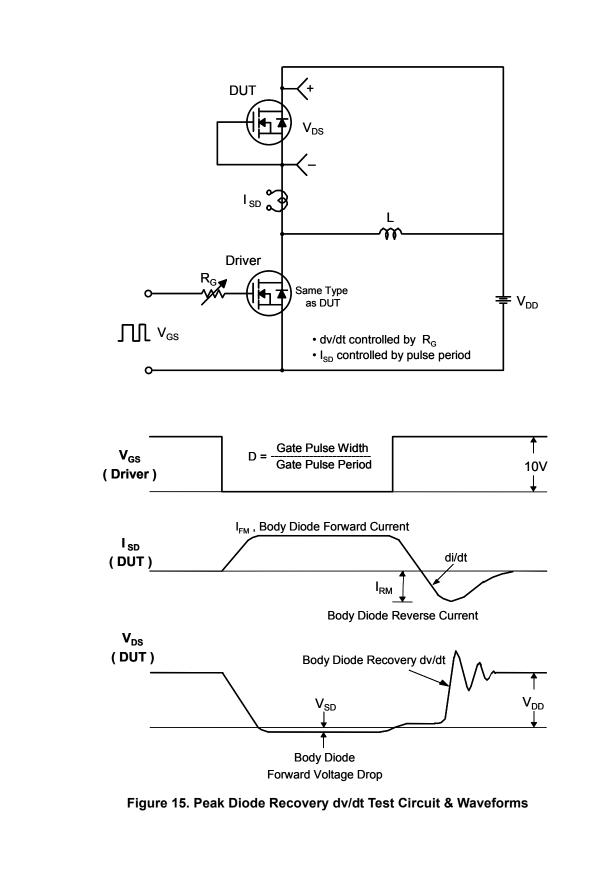
Thermal Characteristics

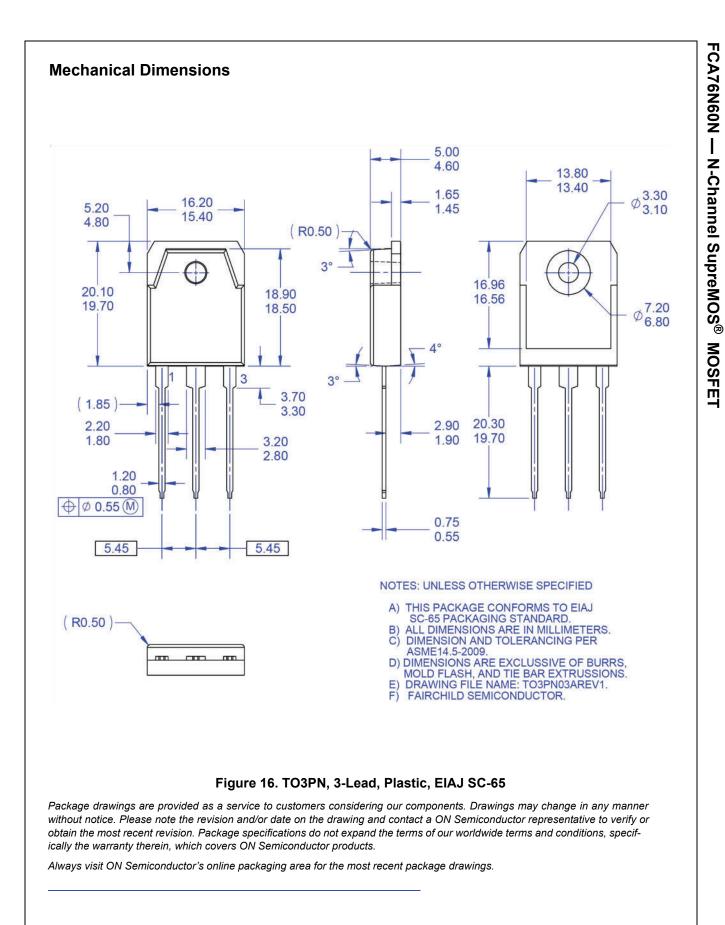

Symbol	Parameter	FCA76N60N	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	0.23	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	40	0/11

1

Sept 2017

FCA76N Electrica Symbol		Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Qua	ntity
	160N	FCA76N60N	TO-3PN	Tube	N/A		N/A	30 L	inits
	l Chara	acteristics T _c =	25°C unless	otherwise noted					
		Parameter		Test Conditio	ons	Min.	Тур.	Max.	Uni
Off Charac	teristics								
BV _{DSS}	Drain to Source Breakdown Voltage		tage	I _D = 1 mA, V _{GS} = 0 V,T _J = 25 ^o C		600	-	-	V
ABV _{DSS}		Breakdown Voltage Temperature							
$/\Delta T_J$	Coefficie	0		$I_D = 1 \text{ mA}$, Referenced to $25^{\circ}C$		-	0.73	-	V/°C
	Zoro Col	Zero Gate Voltage Drain Current		V _{DS} = 480 V, V _{GS} = 0 V		-	-	10	^
DSS	Zelo Gal			V_{DS} = 480 V, T _J = 125°	C	-	-	100	μA
GSS	Gate to Body Leakage Current			V_{GS} = ±30 V, V_{DS} = 0 V		-	-	±100	nA
On Charac	teristics	i							
V _{GS(th)}	Gate Thr	Gate Threshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA		2.0	-	4.0	V
R _{DS(on)}	Static Dr	ain to Source On Resis		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 38 \text{ A}$		-	28.5	36.0	mΩ
9 _{FS}	Forward Transconductance			$V_{\rm DS}$ = 20 V, I _D = 38 A		-	88	-	S
Dynamic C	haracte	ristics							
C _{iss}	Input Ca	pacitance				-	9310	12385	pF
C _{oss}		apacitance		V _{DS} = 100 V, V _{GS} = 0 V	',	-	370	495	pF
C _{rss}		Transfer Capacitance		f = 1 MHz		-	3.1	5.0	pF
C _{OSS}		apacitance		V _{DS} = 380 V, V _{GS} = 0 V	/, f = 1 MHz	-	196	-	pF
Coss(eff.)	Effective	Output Capacitance		$V_{DS} = 0 V \text{ to } 380 V, V_{GS}$		-	914	-	pF
$Q_{g(tot)}$		te Charge at 10V			5	-	218	285	nC
Q _{gs}		Source Gate Charge		V _{DS} = 380 V, I _D = 38 A,	-	-	39	-	nC
Q _{gd}		Drain "Miller" Charge		V _{GS} = 10 V	(Nata 4)	-	66	-	nC
ESR		nt Series Resistance (0	G-S)	f = 1 MHz	(Note 4)	-	1.0	-	Ω
Switching	Charact	oristics		L					I
•		Delay Time				-	34	78	ns
t _{d(on)} t _r		Rise Time		V _{DD} = 380 V, I _D = 38 A,	-	_	24	58	ns
t _{d(off)}		Delay Time		$V_{GS} = 10 \text{ V}, \text{ R}_{G} = 4.7 \Omega$ (Note 4)		-	235	480	ns
d(off)		Fall Time				-	32	74	ns
			I		(1010-1)				
		e Characteristics		Forward Current				76	A
S		n Pulsed Drain to Source				-	-	228	A
sм √ _{SD}		Source Diode Forward		$V_{GS} = 0 V, I_{SD} = 38 A$		-	-	1.2	A V
		Recovery Time		$V_{GS} = 0 V, I_{SD} = 38 A,$ $V_{GS} = 0 V, I_{SD} = 38 A,$		-	613	-	ns
t _{rr}		Recovery Charge		$v_{GS} = 0 v$, $r_{SD} = 30 A$, $dI_{F}/dt = 100 A/\mu s$	_	_	16	_	μC




4

V_{GS} Ş R Qg F V_{DS} Qgs Q_{gd} • DUT I_G = const. Charge Figure 12. Gate Charge Test Circuit & Waveform R VDS VDS 90% V_{DD} V_{GŞ} R_{G} 10% V_{GS} V_{GS} ∏ DUT 0 С Figure 13. Resistive Switching Test Circuit & Waveforms L $E_{AS} = \frac{1}{2} L I_{AS}^2$ VDS BV_{DSS} ID AS R_G **₽** V_{DD} $I_D(t)$ V_{GS} $V_{DS}(t)$ V_{DD} DUT Time tp Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

FCA76N60N — N-Channel SupreMOS[®] MOSFET

FCA76N60N — N-Channel SupreMOS[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdi/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative