

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

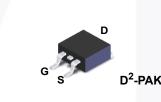
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

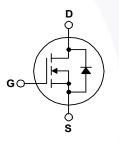


#### April 2015

## FDB082N15A N-Channel PowerTrench<sup>®</sup> MOSFET 150 V, 117 A, 8.2 mΩ

#### Features


- $R_{DS(on)}$  = 6.7 m $\Omega$  (Typ.) @  $V_{GS}$  = 10 V,  $I_D$  = 75 A
- · Fast Switching Speed
- Low Gate Charge, Q<sub>G</sub> = 64.5 nC (Typ.)
- High Performance Trench Technology for Extremely Low  $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant


#### Description

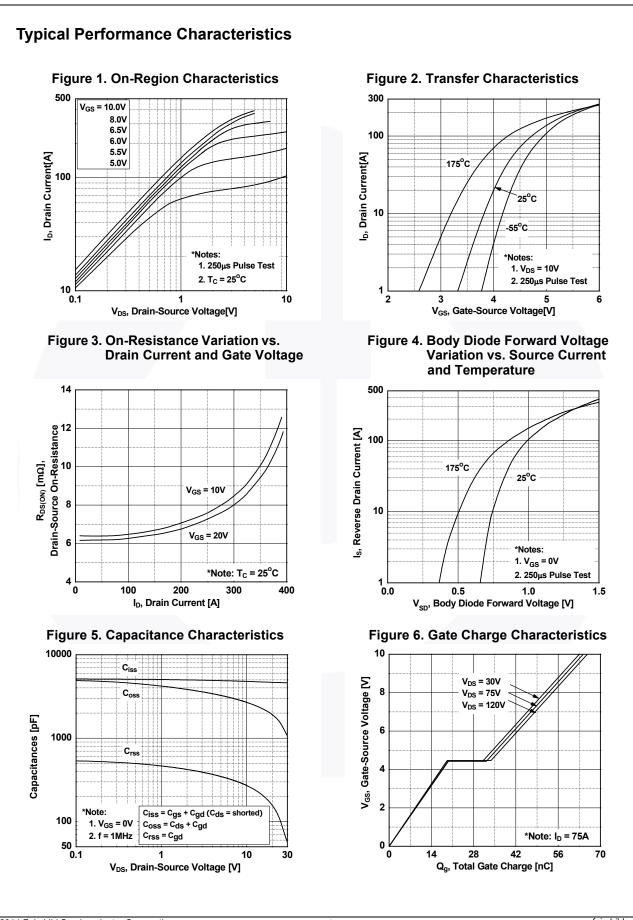
This N-Channel MOSFET is produced using Fairchild Semiconductor's advance PowerTrench<sup>®</sup> process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

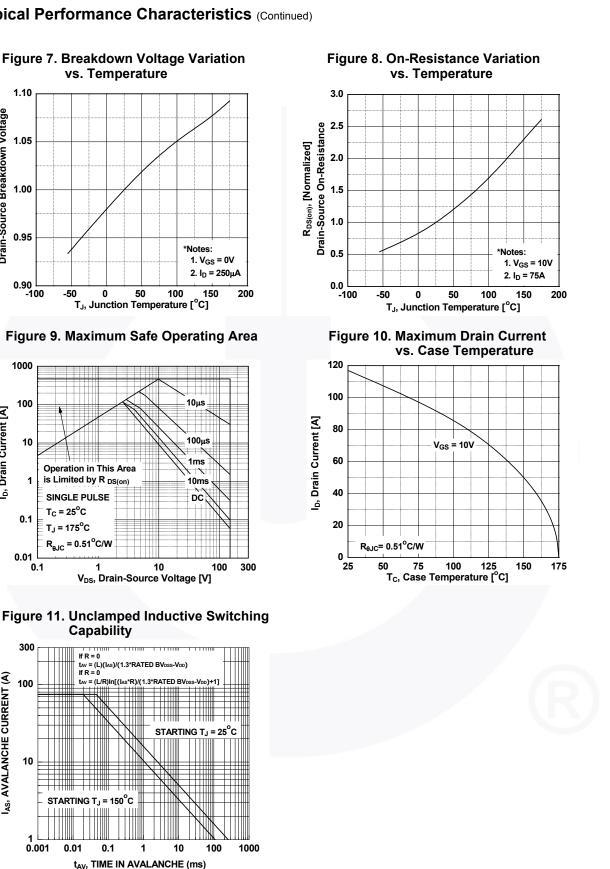
#### Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor drives and Uninterruptible Power Supplies
- Micro Solar Inverter

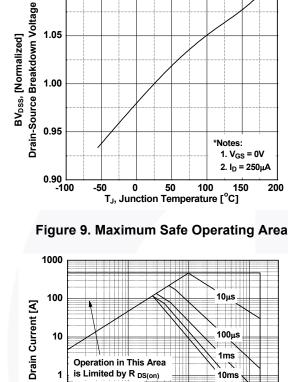





#### Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted.


| Symbol                            |                                | FDB082N15A                                             | Unit<br>V |      |  |
|-----------------------------------|--------------------------------|--------------------------------------------------------|-----------|------|--|
| V <sub>DSS</sub>                  | Drain to Source Voltage        | 150                                                    |           |      |  |
| V <sub>GSS</sub>                  | Cata ta Sauraa Maltaga         | - DC                                                   | ±20       | V    |  |
|                                   | Gate to Source Voltage         | - AC (f > 1 Hz)                                        | ±30       | V    |  |
| I <sub>D</sub>                    | Drain Current                  | - Continuous (T <sub>C</sub> = 25°C, Silicon Limited)  | 117       | A    |  |
|                                   | Drain Current                  | - Continuous (T <sub>C</sub> = 100°C, Silicon Limited) | 83        |      |  |
| I <sub>DM</sub>                   | Drain Current                  | - Pulsed (Note 1)                                      | 468       | Α    |  |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy | 542                                                    | mJ        |      |  |
| dv/dt                             | Peak Diode Recovery dv/dt      | (Note 3)                                               | 6         | V/ns |  |
| P <sub>D</sub>                    | Dower Dissinction              | (T <sub>C</sub> = 25°C)                                | 294       | W    |  |
|                                   | Power Dissipation              | - Derate Sbove 25°C                                    | 1.96      | W/ºC |  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Tempera  | -55 to +175                                            | °C        |      |  |
| TL                                | Maximum Lead Temperature for   | 300                                                    | °C        |      |  |

#### **Thermal Characteristics**


| Symbol          | Parameter                                     | FDB082N15A | Unit |  |  |
|-----------------|-----------------------------------------------|------------|------|--|--|
| $R_{\theta JC}$ | Thermal Resistance, Junction to Case, Max.    | 0.51       | °C/W |  |  |
| $R_{\thetaJA}$  | Thermal Resistance, Junction to Ambient, Max. | 62.5       | °C/W |  |  |

|                                    | nber                                                                                                             | Top Mark                      | Packag              | e Packing Meth                                                                         | od Reel Siz | e Tap | be Width | Qua       | ntity    |
|------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|----------------------------------------------------------------------------------------|-------------|-------|----------|-----------|----------|
| FDB082N                            | FDB082N15A FDB082N15A D                                                                                          |                               | D <sup>2</sup> -PAK | Tape and Re                                                                            | el 330 mn   | า 2   | 24 mm    | 800 units |          |
| Electrica                          | l Chara                                                                                                          | acteristics T <sub>C</sub> =2 | 5ºC unless          | otherwise noted.                                                                       |             |       |          |           |          |
| Symbol                             |                                                                                                                  | Parameter                     |                     | Test Cor                                                                               | nditions    | Min.  | Тур.     | Max.      | Uni      |
| Off Charac                         | toristics                                                                                                        |                               |                     |                                                                                        |             |       | 4        | r.        |          |
| BV <sub>DSS</sub>                  |                                                                                                                  |                               | tana                | I <sub>D</sub> = 250 μA, V <sub>GS</sub> = 0 V, T <sub>C</sub> = 25 <sup>o</sup> C     |             |       | _        | -         | V        |
| ∆BV <sub>DSS</sub>                 | Drain to Source Breakdown Voltage<br>Breakdown Voltage Temperature                                               |                               | -                   |                                                                                        |             |       | -        | -         |          |
| $/\Delta T_J$                      | Coefficient                                                                                                      |                               | C                   | $I_D = 250 \ \mu$ A, Referenced to $25^{\circ}$ C                                      |             |       | 0.08     | -         | V/ºC     |
|                                    | Zero Gate Voltage Drain Current                                                                                  |                               | .+                  | $V_{DS}$ = 120 V, $V_{GS}$ = 0 V<br>$V_{DS}$ = 120 V, $T_{C}$ = 150°C                  |             |       | -        | 1         |          |
| DSS                                |                                                                                                                  |                               | IL .                |                                                                                        |             |       | -        | 500       | μΑ       |
| I <sub>GSS</sub>                   | Gate to Body Leakage Current                                                                                     |                               |                     | $V_{GS} = \pm 20 V, V_{DS} = 0 V$                                                      |             |       | -        | ±100      | nA       |
| On Charac                          | teristics                                                                                                        |                               |                     |                                                                                        |             |       |          |           |          |
| V <sub>GS(th)</sub>                | Gate Thr                                                                                                         | reshold Voltage               |                     | $V_{GS} = V_{DS}, I_{D} = 25$                                                          | 50 μA       | 2.0   | -        | 4.0       | V        |
| R <sub>DS(on)</sub>                |                                                                                                                  | ain to Source On Resis        | tance               | $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 7$                                             |             | -     | 6.7      | 8.20      | mΩ       |
| 9FS                                | Forward Transconductance                                                                                         |                               |                     | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 75$                                            |             | -     | 139      | -         | S        |
|                                    |                                                                                                                  |                               |                     | 50 5                                                                                   |             |       | _        |           |          |
| Dynamic C                          |                                                                                                                  |                               |                     | 1                                                                                      |             |       | 1        |           |          |
| C <sub>iss</sub>                   |                                                                                                                  | pacitance                     |                     | V <sub>DS</sub> = 25 V, V <sub>GS</sub> = 0 V,                                         |             | -     | 4645     | 6040      | pF       |
| C <sub>oss</sub>                   |                                                                                                                  | apacitance                    |                     | f = 1  MHz                                                                             | 50 00       |       | 1445     | 1880      | pF       |
| C <sub>rss</sub>                   |                                                                                                                  | Transfer Capacitance          |                     |                                                                                        |             | -     | 100      | -         | pF       |
| C <sub>iss</sub>                   |                                                                                                                  | pacitance                     |                     | V <sub>DS</sub> = 75 V, V <sub>GS</sub> =                                              | 0 V.        | -     | 4570     | 6040      | pF       |
| C <sub>oss</sub>                   |                                                                                                                  | apacitance                    |                     | f = 1 MHz                                                                              | - ,         |       | 460      | 1880      | pF       |
| C <sub>rss</sub>                   |                                                                                                                  | Transfer Capacitance          |                     |                                                                                        |             | -     | 20       | -         | pF       |
| Q <sub>g(tot)</sub>                |                                                                                                                  | te Charge at 10V              |                     | V <sub>DS</sub> = 120 V, I <sub>D</sub> =                                              | 75 A        | -     | 64.5     | 84        | nC       |
| Q <sub>gs</sub>                    |                                                                                                                  | Source Gate Charge            |                     | $V_{GS} = 10 V$                                                                        | 1070,       | -     | 19.1     | -         | nC       |
| Q <sub>gs2</sub>                   |                                                                                                                  | arge Threshold to Plate       | au                  | -                                                                                      |             | -     | 8.7      | -         | nC       |
| Q <sub>gd</sub>                    |                                                                                                                  | Drain "Miller" Charge         |                     | 6 4 MUL                                                                                | (Note       | ,     | 13.5     | -         | nC       |
| ESR                                | Equivale                                                                                                         | nt Series Resistance (G       | 5-5)                | f = 1 MHz                                                                              |             |       | 2.5      | -         | Ω        |
| Switching                          | Charact                                                                                                          | eristics                      |                     |                                                                                        |             |       |          |           |          |
| t <sub>d(on)</sub>                 | 1                                                                                                                | Delay Time                    |                     |                                                                                        |             | -     | 22       | 54        | ns       |
| t <sub>r</sub>                     |                                                                                                                  | Rise Time                     |                     | $V_{DD} = 75 V, I_D = 75$                                                              |             |       | 58       | 126       | ns       |
| t <sub>d(off)</sub>                | Turn-Off                                                                                                         | Delay Time                    |                     | V <sub>GS</sub> = 10 V, R <sub>G</sub> = 4.7 Ω                                         |             | -     | 61       | 132       | ns       |
| t <sub>f</sub>                     | Turn-Off                                                                                                         | Fall Time                     |                     | _                                                                                      | (Note       |       | 26       | 62        | ns       |
|                                    |                                                                                                                  | . Characteristics             |                     |                                                                                        |             | 1     | 1        |           |          |
|                                    | I                                                                                                                | e Characteristics             | Diad                | E                                                                                      |             |       |          | 447       | •        |
| S                                  | Maximum Continuous Drain to Source Diode Forward Current<br>Maximum Pulsed Drain to Source Diode Forward Current |                               |                     |                                                                                        | -           | -     | 117      | A         |          |
| SM                                 |                                                                                                                  | Source Diode Forward          |                     |                                                                                        | = ^         | -     | -        | 468       | A        |
| V <sub>SD</sub>                    |                                                                                                                  | Recovery Time                 | vollage             | $V_{GS} = 0 V, I_{SD} = 75 A$ $V_{GS} = 0 V, I_{SD} = 75 A,$ $dI_{F}/dt = 100 A/\mu s$ |             | -     | 96       | 1.25      |          |
| t <sub>rr</sub><br>Q <sub>rr</sub> |                                                                                                                  | Recovery Charge               |                     |                                                                                        |             | _     | 268      |           | ns<br>nC |
|                                    | 1.010136                                                                                                         | Coovery Charge                |                     |                                                                                        |             | -     | 200      |           |          |





## Typical Performance Characteristics (Continued)

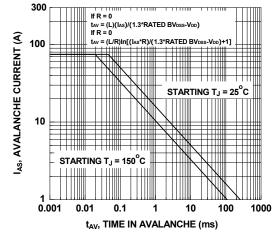


1.10

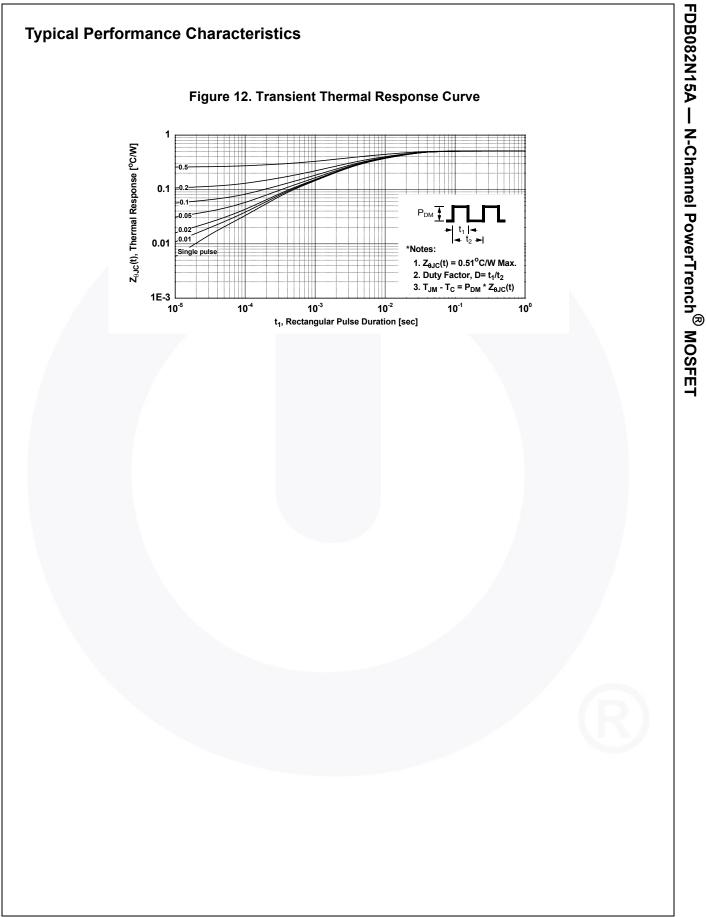
1.05

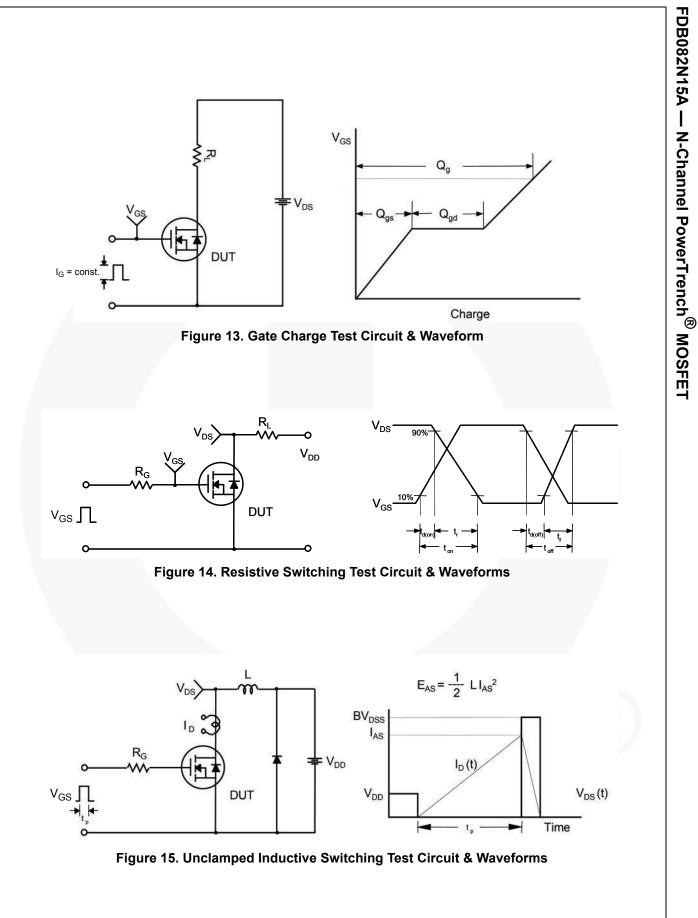
10

1


0.1

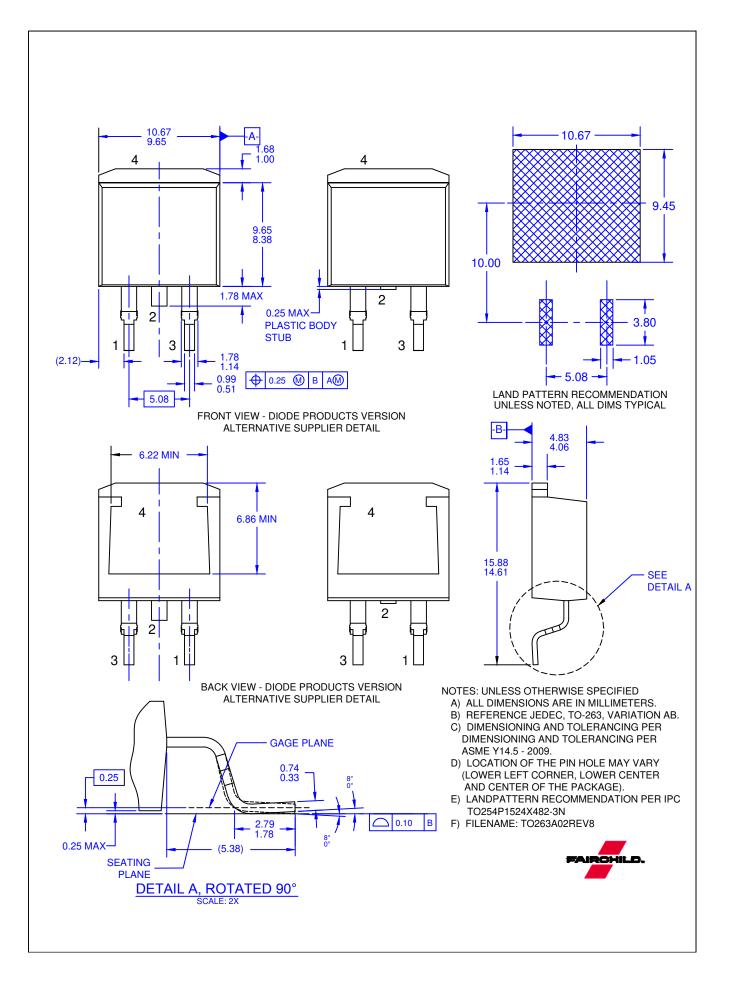
0.01


0.1


ê






©2011 Fairchild Semiconductor Corporation FDB082N15A Rev. 1.8





DUT +  $V_{DS}$ a ۱<sub>SD</sub> م L Driver R<sub>G</sub>, Same Type as DUT L F V<sub>DD</sub>  $\prod V_{GS}$ • dv/dt controlled by R<sub>G</sub> • I<sub>SD</sub> controlled by pulse period Î Gate Pulse Width V<sub>GS</sub> D = Gate Pulse Period 10V (Driver) I<sub>FM</sub>, Body Diode Forward Current I <sub>SD</sub> di/dt (DUT)  $I_{RM}$ Body Diode Reverse Current  $V_{DS}$ (DUT) Body Diode Recovery dv/dt  $V_{SD}$ V<sub>DD</sub> Body Diode Forward Voltage Drop Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

FDB082N15A — N-Channel PowerTrench<sup>®</sup> MOSFET



ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC