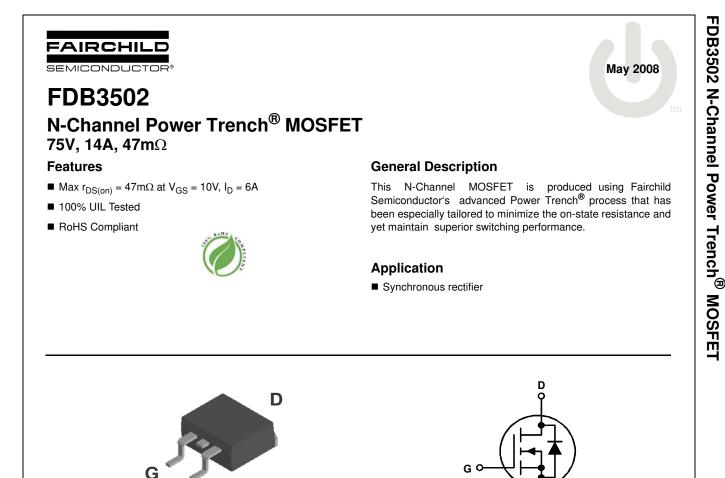


Is Now Part of



ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

TO-263AB FDB Series

S

Symbol	Parameter	Ratings	Units			
V _{DS}	Drain to Source Voltage	75	V			
V _{GS}	Gate to Source Voltage			±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25°C		14		
	-Continuous (Silicon limited)	T _C = 25°C		22	^	
ID	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	6	Α	
	-Pulsed			40		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	54	mJ	
P _D	Power Dissipation	T _C = 25°C		41	w	
	Power Dissipation	(Note 1a)	3.1	VV		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	3	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1	a) 40	0/00

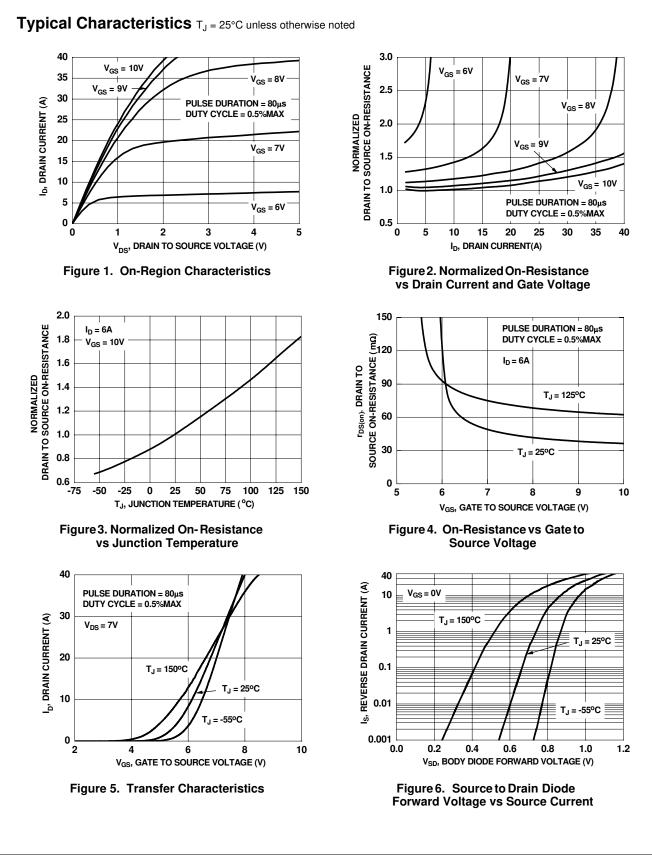
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB3502	FDB3502	TO-263AB	330 mm	24 mm	800 units

FDB3502
N-Channel
Power 1
Trench [®]
MOSFET

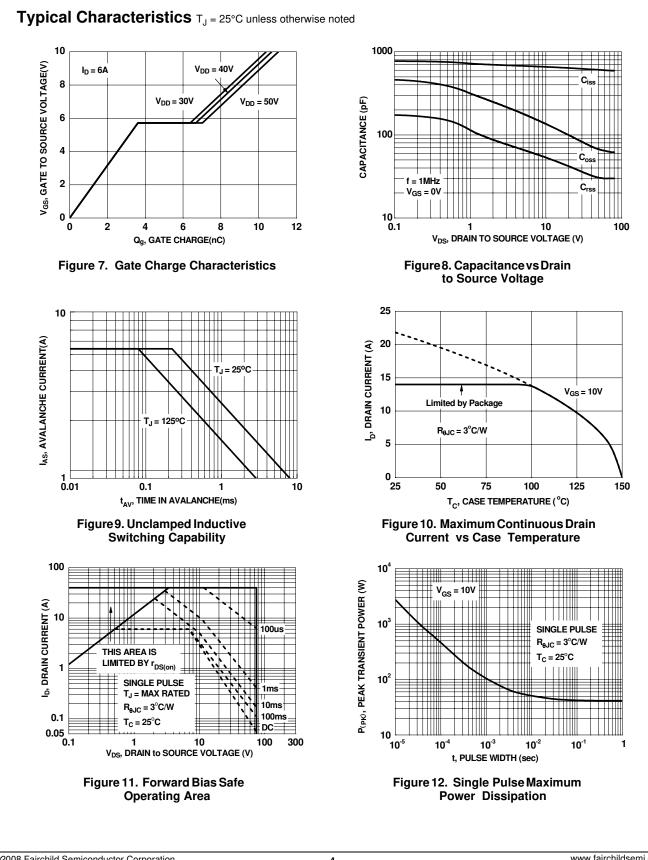
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0 V$	75			V	
ΔΒV _{DSS} ΔΤ _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		70		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 60V,$			1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA	
On Chara	octeristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	3.8	4.5	V	
$\Delta V_{GS(th)} \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		-10		mV/°C	
u	Static Drain to Source On Resistance	$V_{GS} = 10V, I_D = 6A$		37	47		
DS(on)		$V_{GS} = 10V, I_D = 6A, T_J = 125^{\circ}C$		63	80	mΩ	
9 _{FS}	Forward Transconductance	$V_{DD} = 10V, I_D = 6A$		13		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			615	815	pF	
C _{oss}	Output Capacitance	V _{DS} = 40V, V _{GS} = 0V, f = 1MHz		75	105	pF	
C _{rss}	Reverse Transfer Capacitance			35	40	pF	
R _g	Gate Resistance	f = 1MHz		1.5		Ω	
Switching	characteristics						
t _{d(on)}	Turn-On Delay Time			9	17	ns	
t _r	Rise Time	$V_{DD} = 40V, I_D = 6A,$		3	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GEN} = 6\Omega$		13	22	ns	
f	Fall Time			3	10	ns	
ე _g	Total Gate Charge at 10V	V 40V		11	15	nC	
Q _{gs}	Gate to Source Charge	— V _{DD} = 40V — I _D = 6A		4		nC	
Q _{gd}	Gate to Drain "Miller" Charge			3		nC	

V	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_{S} = 2.6A$	(Note 2)	0.78	1.2	V
V _{SD}	Source to Drain Diode Torward Voltage	$V_{GS} = 0V, I_S = 6A$	(Note 2)	0.83	1.3	v
t _{rr}	Reverse Recovery Time	I _F = 6A, di/dt = 100A/µs		25	41	ns
Q _{rr}	Reverse Recovery Charge			17	32	nC


Notes:

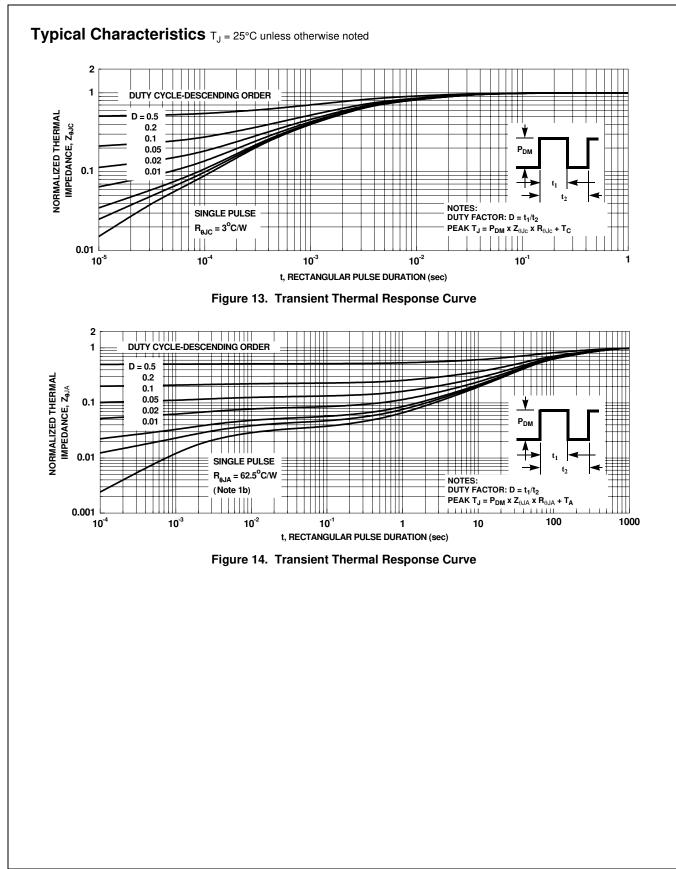
1: R_{0,J} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,JC} is guaranteed by design while R_{0,JA} is determined by the user's board design.

a. 40°C/W when mounted on a 1 in² pad of 2 oz copper b. 62.5°C/W when mounted on a minimum pad.


2: Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

3: Starting T_J = 25°C, L = 3mH, I_{AS} = 6A, V_{DD} = 75V, V_{GS} = 10V.

©2008 Fairchild Semiconductor Corporation FDB3502 Rev.C2


www.fairchildsemi.com

©2008 Fairchild Semiconductor Corporation FDB3502 Rev.C2

www.fairchildsemi.com

FDB3502 N-Channel Power Trench[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

PDP-SPM™

ACEx[®] Build it Now[™] CorePLUS[™] CorePOWER[™] *CROSSVOLT*[™] CTL[™] Current Transfer Logic[™] EcoSPARK[®] EfficentMax[™] EZSWITCH[™] *

Fairchild[®] Fairchild[®] FACT Quiet Series™

FACT[®] FAST[®] FastvCore[™] FlashWriter[®] *

F-PFS™ FRFET[®] Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM[™] OPTOLOGIC[®] **OPTOPLANAR[®]**

FPS™

Power-SPM™ PowerTrench[®] Programmable Active Droop™ OFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ GENERAL ®

The Power Franchise[®] bwer p) franchise TinvBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™

VisualMax™

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC