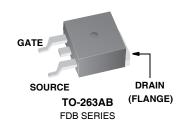
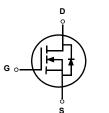
November 2005

FDB8876 N-Channel PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR®


FDB8876 N-Channel PowerTrench[®] MOSFET 30V, 71A, 8.5mΩ


General Descriptions

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(ON)}$ and fast switching speed.

Features

- $r_{DS(ON)}$ = 8.5mΩ, V_{GS} = 10V, I_D = 40A
- $r_{DS(ON)}$ = 10.3mΩ, V_{GS} = 4.5V, I_D = 40A
- High performance trench technology for extremely low rDS(ON)
- Low gate charge
- High power and current handling capability
- RoHS Compliant

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	30	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
Continuous (Continuous (T _C = 25 ^o C, V _{GS} = 10V)	71	A
D	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 4.5V$)	65	A
	Pulsed	Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)	180	mJ
P _D	Power dissipation	70	W
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

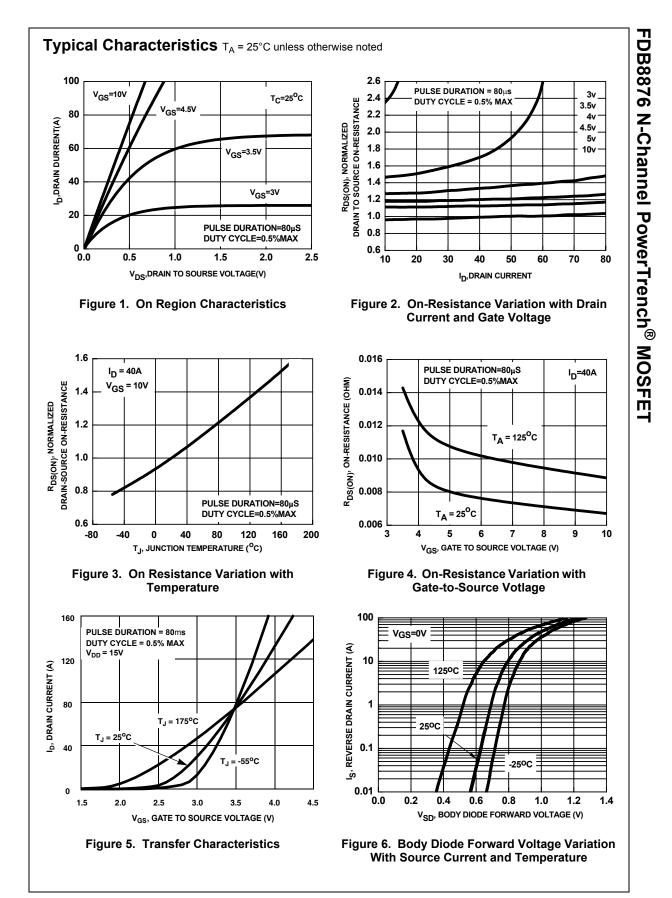
Thermal Characteristics

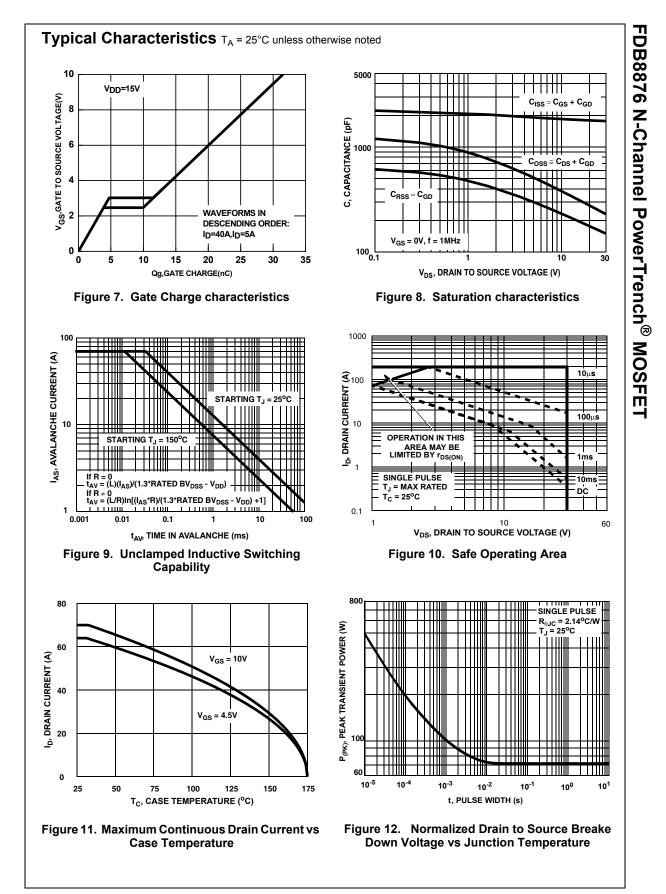
$R_{ ext{ heta}JC}$	Thermal Resistance Junction to Case TO-263	2.14	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance Junction to Ambient TO-263,1in ² copper pad area	43	°C/W

Package Marking and Ordering Information

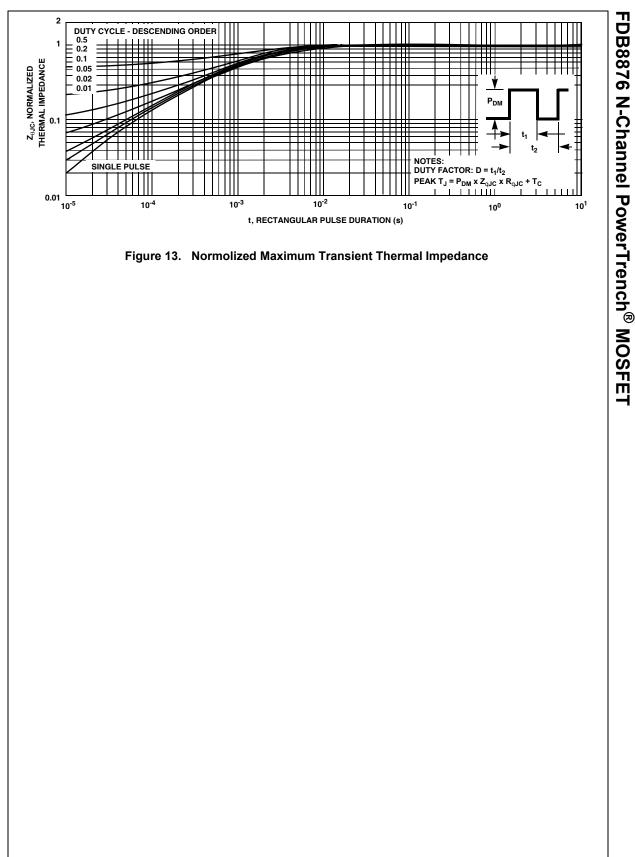
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8876	FDB8876	TO-263AB	330mm	24mm	800 units

Symbol	Parameter	Test Conditions		Min	Тур	Мах	Units
Off Chara	acteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V		30	-	-	V
	Zara Cata Valtaga Drain Current	V _{DS} = 24V				1	μA
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0V	T _A = 150 ^o C	-	-	250	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
On Chara	acteristics						
V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 2$	250μΑ	1.2	-	2.5	V
00(11)			I _D = 40A, V _{GS} = 10V		5.7	8.5	
r	Drain to Source On Resistance	I _D = 40A, V _{GS} = 4		-	7.3	10.3	mΩ
r _{DS(ON)}	Drain to Source On Resistance	$I_D = 40, V_{GS} = 10V,$ $T_A = 175^{\circ}C$		-	11	14	1115.2
Dynamic _{CISS}	Characteristics				1700		pF
	Output Capacitance	– V _{DS} = 15V, V _{GS} =	= 0V,	-	340	-	pF
C _{OSS} C _{RSS}	Reverse Transfer Capacitance	f = 1MHz	-	-	220	-	pr
URSS	Gate Resistance	V _{GS} =0.5V, f = 1N	ЛНz		2.1		•
	Gate Resistance						Ω
R _G			$V_{DD} = 15V$	-	32	45	Ω nC
R _G Q _{g(TOT)}	Total Gate Charge at 10V	V _{GS} = 0V to 10V	V _{DD} = 15V I _D = 40A	-	32 17	45 24	
R _G Q _{g(TOT)} Q _{g(5)}	Total Gate Charge at 10V Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A		-	-	nC
$\begin{array}{c} R_{G} \\ Q_{g(TOT)} \\ Q_{g(5)} \\ Q_{g(TH)} \end{array}$	Total Gate Charge at 10V	V _{GS} = 0V to 10V	I _D = 40A	-	17	24	nC nC
$\begin{array}{c} R_{G} \\ Q_{g(TOT)} \\ Q_{g(5)} \\ Q_{g(TH)} \\ Q_{gs} \end{array}$	Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A	-	17 1.6	24	nC nC nC
$\begin{array}{c} {\sf R}_{\sf G} & \\ {\sf Q}_{{\sf g}({\sf TOT})} & \\ {\sf Q}_{{\sf g}(5)} & \\ {\sf Q}_{{\sf g}({\sf TH})} & \\ {\sf Q}_{{\sf gs}} & \\ {\sf Q}_{{\sf gs}2} & \end{array}$	Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Sourse Gate Charge	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A		17 1.6 4.7	24 2.4 -	nC nC nC nC
R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd}	Total Gate Charge at 10VTotal Gate Charge at 5VThreshold Gate ChargeGate to Sourse Gate ChargeGate Charge Threshold to PlateauGate to Drain "Miller" Charge	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A		17 1.6 4.7 3.1	24 2.4 - -	nC nC nC nC nC
$\begin{array}{c} {\sf R}_{\sf G} & \\ {\sf Q}_{{\sf g}({\sf TOT})} & \\ {\sf Q}_{{\sf g}({\sf 5})} & \\ {\sf Q}_{{\sf g}({\sf TH})} & \\ {\sf Q}_{{\sf g}{\sf s}} & \\ {\sf Q}_{{\sf g}{\sf s}2} & \\ {\sf Q}_{{\sf g}{\sf d}} & \\ \\ \\ {\sf Switchin} \end{array}$	Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Sourse Gate Charge Gate Charge Threshold to Plateau	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A		17 1.6 4.7 3.1	24 2.4 - -	nC nC nC nC nC
R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)} Q _{gs} Q _{gs2} Q _{gd}	Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Sourse Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge g Characteristics (V _{GS} = 10V)	$V_{GS} = 0V \text{ to } 10V$ $V_{GS} = 0V \text{ to } 5V$	I _D = 40A		17 1.6 4.7 3.1 6.8	24 2.4 - -	nC nC nC nC nC


ON			-	-	105	115
t _{d(ON)}	Turn-On Delay Time		-	9	-	ns
t _r	Rise Time	V _{DD} = 15V, I _D = 40A	-	113	-	ns
t _{d(OFF)}	Turn-Off Delay Time	V _{GS} = 10V, R _{GS} = 10Ω	-	50	-	ns
t _f	Fall Time		-	41	-	ns
t _{OFF}	Turn-Off Time		-	-	137	ns


Drain-Source Diode Characteristic

V	SD Source to Drain Diode Voltage	I _{SD} = 40A	-	-	1.25	V
V _{SD}		I _{SD} = 3.2A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I_{SD} = 40A, dI _{SD} /dt=100A/µs	-	-	22	ns
Q _{RR}	Reverse Recovered Charge	I_{SD} = 40A, d I_{SD} /dt=100A/µs	-	-	8	nC


Notes:

1: Starting T_J =25^OC,L=1mH,I_{AS}=19A,V_{DD}=27V,V_{GS}=10V

Typical Characteristics T_A = 25°C unless otherwise noted

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™] FACT [™]	FAST [®] FASTr [™] FPS [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] <i>i-Lo</i> [™] ImpliedDisconnect [™] IntelliMAX [™]	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™] SILENT SWITCHER [®]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UHC [™] UItraFET [®] UniFET [™] VCX [™] Wire [™]
FACT Quiet Serie		OPTOPLANAR™	SMART START™	VVIIC
Across the board The Power Fran Programmable A		PACMAN™ POP™ Power247™ PowerEdge™	SPM™ Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 117