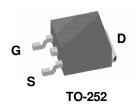
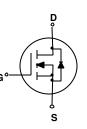


on semiconductor* FDD3680


100V N-Channel PowerTrench® MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS}(\text{ON})}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 25 A, 100 V. $R_{DS(ON)} = 46 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 51 \text{ m}\Omega @ V_{GS} = 6 \text{ V}$
- Low gate charge (38 nC typical)
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability.

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

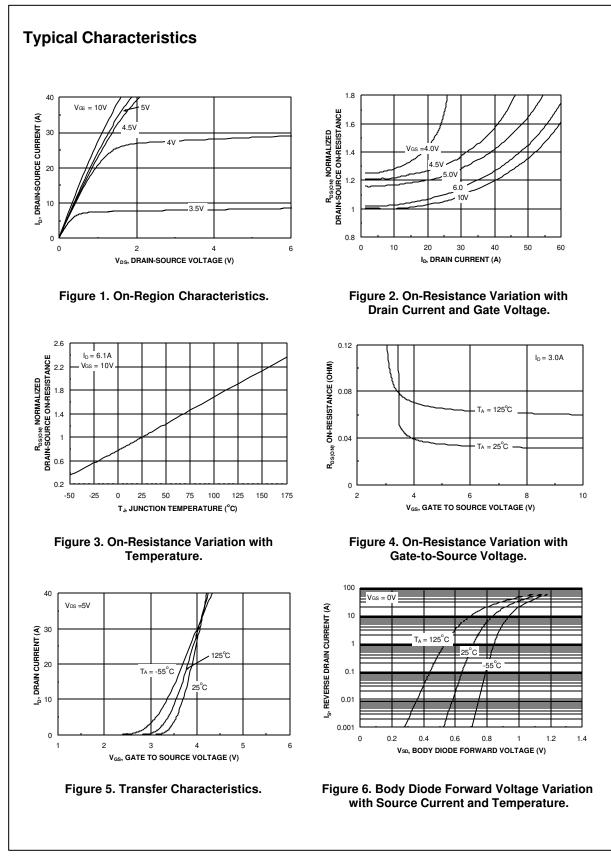
Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	100	V
V _{GSS}	Gate-Source Voltage	±20	V
D	Drain Current – Continuous (Note 1)	25	A
	Drain Current – Pulsed	100	
PD	Maximum Power Dissipation (Note 1)	68	W
	(Note 1a)	3.8	
	(Note 1b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +175	°C

Thermal Characteristics

R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	2.2	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W

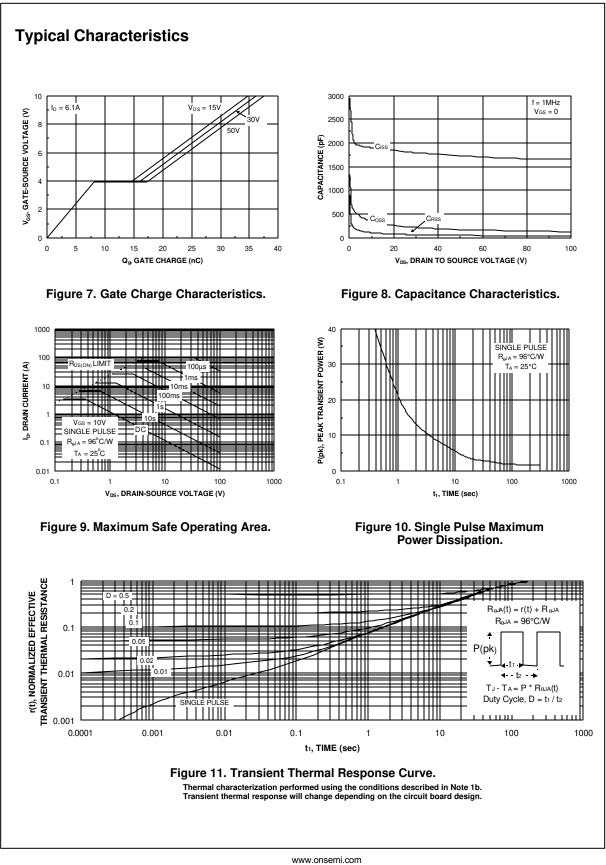
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDD3680	FDD3680	13" 16mm		2500 units
		•	•	


© 2001 Semiconductor Components Industries, LLC. November-2017, Rev. 3

Publication Order Number: FDD3680/D

nits


Avalanche EnergyImage: Construct of the second	Symbol	Parameter	Tes	t Conditions	Min	Тур	Мах	Units
W_{DS} Single Pulse Drain-Source Avalanche Energy Maximum Drain-Source Avalanche Current $V_{D0} = 50 \text{ V}$, $b = 6.1 \text{ A}$ 245n $Maximum Drain-Source BreakdownVoltageBreakdown Voltage TemperatureCoefficientV_{CS} = 0 \text{ V}, b = 250 \mu \text{ A}100100100ABV_{CSS}AT_{1}Breakdown Voltage TemperatureCoefficientb = 250 \mu \text{ A}, Referenced to 25^{\circ}\text{C}-101mNbssZero Gate Voltage Drain CurrentV_{CS} = 80 \text{ V}, V_{CS} = 0 \text{ V}100\mubssGate-Body Leakage, ForwardV_{CS} = 20 \text{ V}, V_{CS} = 0 \text{ V}100\mubssGate-Body Leakage, ReverseV_{CS} = -20 \text{ V}V_{CS} = 0 \text{ V}-100nV_{CS}(m)Gate Threshold VoltageV_{CS} = -20 \text{ V}V_{CS} = 0 \text{ V}-100n\Delta V_{CS}(m)Gate Threshold VoltageV_{CS} = 10 \text{ V}, b = 6.1 \text{ A}22.44\Delta V_{CS}(m)Gate Threshold VoltageV_{CS} = 10 \text{ V}, b = 6.1 \text{ A}2525n\Delta T_{O}Temperature CoefficientV_{CS} = 10 \text{ V}, b = 6.1 \text{ A}25525n\Delta T_{O}Temperature CoefficientV_{CS} = 50 \text{ V}V_{CS} = 5 \text{ V}25n\Delta T_{O}Don-State Drain CurrentV_{CS} = 50 \text{ V}V_{CS} = 0 \text{ V},1735p\Delta T_{O}Turn-On Delay TimeV_{CS} = 50 \text{ V}b = 1 \text{ A},1425n\Delta T_{O}Turn-On Rise Time$	Drain-So	burce Avalanche Ratings (No	ote 1)			•		
Image Maximum Drain-Source Avalanche Current VGS VGS VGS 0 6.1 Maximum Drain-Source BV DSS ATJ Drain-Source Breakdown Voltage ATJ VGS 0.0 -101 mV BVDSS ATJ Breakdown Voltage Temperature Coefficient b= 250 μ A, Referenced to 25°C -101 mV bss Zero Gate Voltage Drain Current VGS = 80 V, VGS = 0 V 100 n bss Gate-Body Leakage, Forward VGS = 20 V, VGS = 0 V 100 n On Characteristics (wote 2) 0 -100 n VGS(m) Gate Threshold Voltage b = 250 μ A, Referenced to 25°C -6.5 mM ATJ Temperature Coefficient b = 250 μ A, Referenced to 25°C -6.5 mM AUGSm) Gate Threshold Voltage b = 250 μ A, Referenced to 25°C -6.5 mM On-Resistance VGS = 10 V, b = 6.1 A YGS = 0.7 32 46 n On-State Drain Current VGS = 10 V, b = 6.1 A 25 32 46 n On-State Drain Current VGS = 50 V, b = 6.1 A 25 34 51 17 14 53 <td></td> <td>Single Pulse Drain-Source</td> <td></td> <td>I_D = 6.1 A</td> <td></td> <td></td> <td>245</td> <td>mJ</td>		Single Pulse Drain-Source		I _D = 6.1 A			245	mJ
Off Characteristics BVoss Drain–Source Breakdown Voltage V _{GS} = 0 V, b = 250 μ A 100 100 100 <u>AT</u> , Breakdown Voltage Temperature Coefficient b = 250 μ A, Referenced to 25°C -101 mV bss Zero Gate Voltage Drain Current V _{GS} = 80 V, V _{GS} = 0 V 100 µ bss Gate–Body Leakage, Forward V _{GS} = 20 V, V _{GS} = 0 V 100 µ bss Gate–Body Leakage, Forward V _{GS} = 20 V, V _{GS} = 0 V -100 n On Characteristics (Note 2) 0 -100 n VGs(m) Gate Threshold Voltage b = 250 μ A, Referenced to 25°C -6.5 mN AT_a Temperature Coefficient b = 250 μ A, Referenced to 25°C -6.5 mN AT_a Temperature Coefficient V _{GS} = 10 V, b = 6.1 A 32 46 n On–Resistance V _{GS} = 10 V, b = 6.1 A J_s = 125°C 61 92 34 51 biom On–State Drain Current V _{GS} = 50 V, b = 5.1 A 25 34 51 Dynamic Characteristics Note 5 V _{GS} = 50 V, b = 1.4 25 33	AR	Maximum Drain-Source					6.1	A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off Char							
NotageNotageNotageNotageNotageNotageNotage ΔBV_{DOS} ΔT_{ij} Breakdown Voltage Temperature Coefficientb = 250 μ A, Referenced to 25°C-101mNbsssZero Gate Voltage Drain Current $V_{DS} = 80$ V, $V_{CS} = 0$ V100mbsssGate-Body Leakage, Forward $V_{CS} = 20$ V, $V_{DS} = 0$ V100mConcerned to 25°CMaximum Continuous Drain-Source $V_{CS} = -20$ V, $V_{DS} = 0$ V100mOn Characteristics(Note 2)Vos = -20 V, $V_{DS} = 0$ V-100mVGS(m)Gate Threshold Voltage Temperature Coefficientb = 250 μ A, Referenced to 25°C-6.5m ΔT_{ij} Temperature Coefficientb = 250 μ A, Referenced to 25°C-6.5m ΔT_{ij} Temperature Coefficientb = 250 μ A, Referenced to 25°C-6.5m ΔT_{ij} Temperature Coefficientb = 250 μ A, Referenced to 25°C-6.5m ΔT_{ij} Temperature CoefficientVos = 10 V, $b = 6.1$ A, $T_{ij} = 125°C$ 3246 ΔT_{ij} CharacteristicsVos = 10 V, $V_{CS} = 5$ V25-6.1 D_{ion} On-State Drain CurrentVos = 5 V, $b = 6.1$ A25-7.0 D_{ion} Input CapacitanceVos = 5 V, $b = 6.1$ A25-7.0 C_{ess} Input CapacitanceInput Capacitance533p C_{ess} Output CapacitanceVos = 10 V, $R_{GEN} = 10 \Omega$ 8.517n d_{eon} Turn-Off Fall TimeV			V 0.V	1 050 1	100			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5		·	100	101		
bbssZero Gate Voltage Drain Current $V_{DS} = 80 V$, $V_{GS} = 0 V$ 10 μ bssrGate-Body Leakage, Forward $V_{GS} = 20 V$, $V_{DS} = 0 V$ 100rbssrGate-Body Leakage, Reverse $V_{GS} = -20 V$ $V_{DS} = 0 V$ -100rOn Characteristics(Note 2)Vossim)Gate Threshold Voltage $V_{DS} = V_{GS}$, $b = 250 \ \mu$ A,22.44r ΔV_{GS} Gate Threshold Voltage $b = 250 \ \mu$ A, Referenced to 25° C-6.5mN ΔT_J Temperature Coefficient $b = 250 \ \mu$ A, Referenced to 25° C-6.5mN D_{GS} Durm-Resistance $V_{GS} = 10 V$, $b = 6.1 A$, $T_J = 125^{\circ}$ C3451 $b_{(en)}$ On-State Drain Current $V_{GS} = 10 V$, $b = 6.1 A$ 253451 $D_{(en)}$ On-State Drain Current $V_{GS} = 5V$, $b = 6.1 A$ 253451 $D_{(en)}$ On-State Drain current $V_{GS} = 5V$, $b = 6.1 A$ 2534 C_{SS} Input Capacitance $V_{DS} = 50 V$, $V_{GS} = 0 V$,1735p C_{oss} Output Capacitance $V_{DS} = 50 V$, $b = 1 A$,1425n C_{SS} Reverse Transfer Capacitance $V_{DS} = 50 V$, $B = 1 A$,1425n C_{oss} Output Capacitance $V_{DS} = 50 V$, $B = 1 A$,2134n C_{ass} Reverse Transfer Capacitance $V_{DS} = 50 V$, $B = 1 A$,21 <td></td> <td></td> <td>l_D = 250 μA, H</td> <td>eferenced to 25°C</td> <td></td> <td>-101</td> <td></td> <td>mV/°C</td>			l _D = 250 μA, H	eferenced to 25°C		-101		mV/°C
Gass RGate-Body Leakage, Reverse $V_{GS} = -20$ $V_{DS} = 0$ -100 r On Characteristics (Nose)(Note 2) $V_{OS} = V_{GS}$, $b = 250 \ \mu$ A, Referenced to 25°C -6.5 mN $\Delta V_{OSB(n)}$ Gate Threshold Voltage Temperature Coefficient $b = 250 \ \mu$ A, Referenced to 25°C -6.5 mN ΔT_J Temperature Coefficient $b = 250 \ \mu$ A, Referenced to 25°C -6.5 mN ΔT_J Temperature Coefficient $V_{OS} = 10 \ V$, $b = 6.1 \ A$, $T_J = 125°C$ 61 92 ΔT_{ON} Non-Resistance $V_{OS} = 10 \ V$, $b = 6.1 \ A$, $T_J = 125°C$ 61 92 M_{ON} On-State Drain Current $V_{OS} = 10 \ V$, $b = 6.1 \ A$ 25 $46 \ rm$ $V_{OS} = 6 \ V$, $b = 5.8 \ A$ 34 51 $46 \ rm$ M_{ON} On-State Drain Current $V_{OS} = 50 \ V$, $b = 6.1 \ A$ 25 $46 \ rm$ M_{ON} On-State Drain Current $V_{OS} = 50 \ V$, $b = 6.1 \ A$ $25 \ M$ $46 \ rm$ M_{OS} Input Capacitance $V_{OS} = 50 \ V$, $b = 6.1 \ A$ $25 \ M$ $46 \ mm$ M_{ON} Reverse Transfer Capacitance $53 \ M$ $173 \ M$ p M_{S} Reverse Transfer Capacitance $V_{OS} = 10 \ V$, $B = 1 \ A$, $14 \ 25 \ mm$ M_{ON} Turm-On Belay Time $V_{OS} = 50 \ V$, $b = 6.1 \ A$, $8.5 \ 17 \ mm$ t_{M} Turm-Off Fall Time $V_{OS} = 10 \ V$ $8.5 \ 17 \ mm$ M_{Q_3} Gate-Darage $V_{OS} = 50 \ V$, $b = 6.1 \ A$, $8.5 \ 31 \ mm$ Q		Zero Gate Voltage Drain Current	$V_{DS} = 80 V$,	$V_{GS} = 0 V$			10	μA
On Characteristics(Note 2)VGS(th)Gate Threshold VoltageVDS = VGS, b = 250 μ A, Referenced to 25°C-6.5ATJTemperature Coefficientb = 250 μ A, Referenced to 25°C-6.5ATJTemperature CoefficientVGS = 10 V, b = 6.1 A32PostoniStatic Drain–SourceVGS = 10 V, b = 6.1 A, TJ = 125°C34On–ResistanceVGS = 10 V, b = 6.1 A3246VGS = 10 V, VGS = 5 V, b = 5.8 A3451b(m)On–State Drain CurrentVGS = 5 V, b = 5.8 A25Dynamic CharacteristicsGassInput CapacitanceVDS = 5 V, b = 6.1 A25CossOutput CapacitanceF = 1.0 MHz1776pCossOutput CapacitanceF = 1.0 MHz1776pSwitching Characteristics (Note 2)VDS = 50 V, b = 1 A,1425ntai(m)Turn–On Bias TimeVDS = 50 V, b = 1 A,8.5177ntai(m)Turn–On Bias TimeVDS = 50 V, b = 6.1 A,3853ntai(m)Turn–Off Fall TimeVDS = 50 V, b = 6.1 A,8.517ntai(m)Turn–Off Fall TimeVDS = 50 V, b = 6.1 A,3853ntai(m)Turn–Off Fall TimeVDS = 50 V, b = 6.1 A,3853ntai(m)Turn–Off Fall TimeVDS = 50 V, b = 6.1 A,3853ntai(m)Turn–Off Fall Time2134nntai(m)Gate–Drain ChargeVDS = 50 V, b = 6.1 A,3853n <td>GSSF</td> <td>Gate-Body Leakage, Forward</td> <td>$V_{GS} = 20 V$,</td> <td>$V_{DS} = 0 V$</td> <td></td> <td></td> <td>100</td> <td>nA</td>	GSSF	Gate-Body Leakage, Forward	$V_{GS} = 20 V$,	$V_{DS} = 0 V$			100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GSSR	Gate-Body Leakage, Reverse	$V_{GS} = -20 \text{ V}$	$V_{DS} = 0 V$			-100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On Char	acteristics (Note 2)						
$ \begin{array}{c c c c c c c } \Delta T_J & Temperature Coefficient & V_{GS} = 10 V, & b = 6.1 A \\ Pos(on) & Static Drain–Source & V_{GS} = 10 V, & b = 6.1 A, T_J = 125^{\circ}C & 32 & 46 & m \\ V_{GS} = 10 V, & b = 6.1 A, T_J = 125^{\circ}C & 34 & 51 & 0 \\ \hline \\ b(on) & On–State Drain Current & V_{GS} = 6 V, & b = 5.8 & 25 & 25 & 24 & 0 \\ \hline \\ grs & Forward Transconductance & V_{DS} = 5 V, & b = 6.1 A & 25 & 25 & 24 & 0 \\ \hline \\ grs & Input Capacitance & V_{DS} = 50 V, & V_{GS} = 0 V, & 1735 & p \\ \hline \\ \hline \\ C_{oss} & Output Capacitance & f = 1.0 \text{ MHz} & 176 & p \\ \hline \\ \hline \\ \hline \\ C_{rss} & Reverse Transfer Capacitance & V_{DD} = 50 V, & b = 1 A, & 14 & 25 & n \\ \hline \\ t_{(on)} & Turn–On Delay Time & V_{CS} = 50 V, & b = 1 A, & 14 & 25 & n \\ \hline \\ t_{(on)} & Turn–On Rise Time & V_{CS} = 10 V, & R_{GEN} = 10 \Omega & 8.5 & 17 & n \\ \hline \\ t_{(on)} & Turn–On Rise Time & V_{CS} = 50 V, & b = 6.1 A & 21 & 34 & n \\ \hline \\ q_{g} & Total Gate Charge & V_{CS} = 50 V, & b = 6.1 A, & 38 & 53 & n \\ \hline \\ q_{g} & Gate–Source Charge & V_{CS} = 50 V, & b = 6.1 A, & 38 & 53 & n \\ \hline \\ q_{gd} & Gate–Drain Charge & V_{CS} = 50 V, & b = 6.1 A, & 38 & 53 & n \\ \hline \\$			$V_{DS} = V_{GS},$	l _D = 250 μA	2	2.4	4	V
On-Resistance $V_{0S} = 10 \text{ V}, \text{ b} = 6.1 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$ $61 \\ 34 \\ 51 \\ 51 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53 \\ 53$			I _D = 250 μA, R	eferenced to 25°C		-6.5		mV/°C
VGS GGSForward TransconductanceVGS S S10 V, VGS S VGS S10 V, S S10 V, S S10 V, S 	R _{DS(on)}							mΩ
b_{(on)}On-State Drain Current $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ 25A g_{FS} Forward Transconductance $V_{DS} = 5 \text{ V}, b = 6.1 \text{ A}$ 253Dynamic Characteristics G_{SS} Input Capacitance $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, \\ f = 1.0 \text{ MHz}$ 1735p G_{SS} Output Capacitance $f = 1.0 \text{ MHz}$ 176p G_{SS} Reverse Transfer Capacitance 53 pSwitching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 50 \text{ V}, b = 1 \text{ A}, \\ V_{GS} = 10 \text{ V}, B_{GEN} = 10 \Omega$ $8.5 \text{ 177} \text{ m}$ $t_{d(off)}$ Turn-Off Delay Time $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{GS} = 10 \text{ V}, B_{GEN} = 10 \Omega$ $8.5 \text{ 177} \text{ m}$ $t_{d(off)}$ Turn-Off Fall Time $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{GS} = 10 \text{ V}$ $8.1 \text{ 4} \text{ 4} \text{ 25}$ q_g Total Gate Charge $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{GS} = 10 \text{ V}$ $9.2 \text{ 1} \text{ 34}$ q_g Gate-Source Charge $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{GS} = 10 \text{ V}$ 9.2 m D_{qd} Gate-Drain Charge $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{GS} = 10 \text{ V}$ 9.2 m d_{gd} Gate-Drain Charge $V_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, \\ V_{SS} = 10 \text{ V}$ 9.2 m $Drain-Source Diode Characteristics and Maximum Ratings9.2 \text{ m}9.2 \text{ m}V_{SS}Drain-Source Diode ForwardV_{SS} = 0 \text{ V}b = 2.9 \text{ A} (Note 2)0.73 \text{ 1.3} \text{ M}$		On-Resistance		l₀ = 6.1 A, TJ = 125°C l₀ = 5.8 A			-	
grsForward Transconductance $V_{DS} = 5 V$, $b = 6.1 A$ 253Dynamic CharacteristicsGssInput Capacitance $V_{DS} = 50 V$, $V_{GS} = 0 V$,1735pGossOutput Capacitance $f = 1.0 \text{ MHz}$ 176pGrssReverse Transfer Capacitance $f = 1.0 \text{ MHz}$ 176pSwitching Characteristics (Note 2) 53 pta(on)Turn-On Delay Time $V_{DD} = 50 V$, $b = 1 A$,1425trTurn-On Rise Time $V_{SS} = 10 V$, $B_{GEN} = 10 \Omega$ 8.517nta(off)Turn-Off Fall Time $V_{DS} = 50 V$, $b = 6.1 A$,3853nQgTotal Gate Charge $V_{DS} = 50 V$, $b = 6.1 A$,3853nQgsGate-Source Charge $V_{GS} = 10 V$ 8.11 nQgdGate-Drain Charge $V_{CS} = 0 V$, $b = 2.9 A$ (Note 2)0.731.39VosDrain-Source Diode Forward $V_{CS} = 0 V$, $b = 2.9 A$ (Note 2)0.731.39	D(on)	On–State Drain Current		$V_{DS} = 5 V$	25	04	01	А
Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, 1735$ p C_{oss} Output Capacitance $f = 1.0 \text{ MHz}$ 176p C_{rss} Reverse Transfer Capacitance53pSwitching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 50 \text{ V}, b = 1 \text{ A}, 14 25 nt_{d(on)}Turn-On Rise TimeV_{GS} = 10 \text{ V}, R_{GEN} = 10 \Omega8.5 17 nt_{d(off)}Turn-Off Delay TimeV_{DS} = 50 \text{ V}, b = 6.1 \text{ A}, 21 34 n63 94 nt_{qg}Total Gate ChargeV_{GS} = 10 \text{ V}b = 6.1 \text{ A}, 38 53 n9.2 nQ_{gd}Gate-Drain ChargeV_{GS} = 10 \text{ V}b = 6.1 \text{ A}, 9.2 n8.1 nDrain-Source Diode Characteristics and Maximum Ratings9.2 n9.2 n$	<u> </u>					25		S
G_{ss} Input Capacitance $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, 1735$ p G_{oss} Output Capacitance $f = 1.0 \text{ MHz}$ 176 p G_{rss} Reverse Transfer Capacitance 53 pSwitching Characteristics (Note 2) 176 53 p $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 50 \text{ V}, I_D = 1 \text{ A}, 14$ 25 n t_r Turn-On Rise Time $V_{GS} = 10 \text{ V}, R_{GEN} = 10 \Omega$ $8.5 \text{ 17} \text{ n}$ $t_{d(off)}$ Turn-Off Delay Time $V_{DS} = 50 \text{ V}, I_D = 6.1 \text{ A}, 21 \text{ 34} \text{ n}$ Q_g Total Gate Charge $V_{DS} = 50 \text{ V}, I_D = 6.1 \text{ A}, 38 \text{ 53} \text{ n}$ Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ $I_D = 6.1 \text{ A}, 9.2 \text{ n}$ Drain-Source Diode Characteristics and Maximum Ratings 9.2 n I_S Maximum Continuous Drain-Source Diode Forward 2.9 A $V_{GS} = 0 \text{ V}$ $I_S = 2.9 \text{ A}$ (Note 2) 0.73 1.3			· 👦 • • ,					
CossOutput Capacitance $f = 1.0 \text{ MHz}$ 176pCrssReverse Transfer Capacitance $f = 1.0 \text{ MHz}$ 176pSwitching Characteristics (Note 2)VDD = 50 V, b = 1 A, VGS = 10 V, RGEN = 10 Q1425ntd(on)Turn-On Delay TimeVDD = 50 V, B = 1 A, VGS = 10 V, RGEN = 10 Q1425ntd(off)Turn-Off Delay TimeVDD = 50 V, B = 1 A, VGS = 10 V, RGEN = 10 Q1425ntd(off)Turn-Off Fall TimeVDS = 50 V, B = 10 Q8.517ntqTotal Gate ChargeVDS = 50 V, B = 6.1 A, VGS = 10 V10 = 6.1 A, VGS = 10 V3853nQgGate-Source ChargeVDS = 50 V, B = 10 VID = 6.1 A, VGS = 10 V3853nDrain-Source Diode Characteristics and Maximum Ratings8Maximum Continuous Drain-Source Diode Forward Current2.94VosDrain-Source Diode ForwardVGS = 0 VIs = 2.9 A (Note 2)0.731.313			Vm - 50 V	V = -0 V		1735		pF
CossOutput SupportOutput Support<			- ,	\mathbf{v} GS = \mathbf{v} \mathbf{v} ,				pr pF
Switching Characteristics (Note 2) $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 50 \text{ V}$, $b = 1 \text{ A}$, $V_{CS} = 10 \text{ V}$, $P_{GEN} = 10 \Omega$ 1425n t_r Turn-On Rise Time $V_{CS} = 10 \text{ V}$, $P_{GEN} = 10 \Omega$ 8.5 17 n $t_{d(off)}$ Turn-Off Delay Time 63 94 n t_r Turn-Off Fall Time 21 34 n Q_g Total Gate Charge $V_{DS} = 50 \text{ V}$, $b = 6.1 \text{ A}$, 38 53 n Q_{gs} Gate-Source Charge $V_{CS} = 10 \text{ V}$ 8.1 n Q_{gd} Gate-Drain Charge 9.2 nDrain-Source Diode Characteristics and Maximum Ratings k_s Maximum Continuous Drain-Source Diode Forward Current 2.9 4 $V_{CS} = 0 \text{ V}$ $k = 2.9 \text{ A}$ (Note 2) 0.73 1.3 0.73						-		pr pF
$t_{d(on)}$ Turn-On Delay Time $V_{DD} = 50 \text{ V}$, $b = 1 \text{ A}$, 14 25 n t_r Turn-On Rise Time $V_{GS} = 10 \text{ V}$, $P_{GEN} = 10 \Omega$ 8.5 17 n $t_{d(off)}$ Turn-Off Delay Time 63 94 n t_r Turn-Off Fall Time 21 34 n Q_g Total Gate Charge $V_{DS} = 50 \text{ V}$, $v_{GS} = 10 \text{ V}$ $b = 6.1 \text{ A}$, Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 8.1 n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 9.2 nDrain-Source Diode Characteristics and Maximum Ratings k_s Maximum Continuous Drain-Source Diode Forward Current 2.9 A $V_{GS} = 0 \text{ V}$ $k = 2.9 \text{ A}$ (Note 2) 0.73 1.3 V		·				50		рі
trTurn-On Rise Time td(off)VGS = 10 V,RGEN = 10 Ω 8.517ntd(off)Turn-Off Delay Time trC6394nQgTotal Gate Charge QgsVGS = 50 V,Ib = 6.1 A, VGS = 10 V3853nQgTotal Gate Charge QgsVGS = 50 V,Ib = 6.1 A, VGS = 10 V88.1nDrain-Source Diode Characteristics and Maximum Ratings9.2nVspDrain-Source Diode ForwardVGS = 0 VIs = 2.9 A (Note 2)0.731.3			Vac = 50 V	h = 1 Δ		1/	25	ne
$t_{d(off)}$ Turn-Off Delay Time $t_{d(off)}$ Turn-Off Delay Time t_r Turn-Off Fall Time Q_g Total Gate Charge Q_{gs} Gate-Source Charge Q_{gd} Gate-Drain Charge Q_{gd} Gate-Drain Charge Q_{gd} Gate-Drain Charge P_{gs} Maximum Continuous Drain-Source Diode Forward Current Q_{gs} Drain-Source Diode Forward $V_{GS} = 0$ $k_s = 2.9$ A (Note 2) $V_{GS} = 0$ $k_s = 2.9$ A (Note 2)			$V_{GS} = 10 V$,	$R_{GEN} = 10 \Omega$			-	
Turn-Off Fall Time 21 34 n Qg Total Gate Charge V _{DS} = 50 V, Ib = 6.1 A, V _{GS} = 10 V 38 53 n Qgd Gate-Source Charge V _{SS} = 10 V 8.1 n Drain-Source Diode Characteristics and Maximum Ratings 9.2 n b Maximum Continuous Drain-Source Diode Forward Current 2.9 0 Vsp Drain-Source Diode Forward V _{GS} = 0 V b = 2.9 A (Note 2) 0.73 1.3								
Qg Total Gate Charge V _{DS} = 50 V, V _{GS} = 10 V Ib = 6.1 A, V _{GS} = 10 V 38 53 n Qgd Gate-Source Charge V _{SS} = 10 V 8.1 n Drain-Source Diode Characteristics and Maximum Ratings 9.2 n Is Maximum Continuous Drain-Source Diode Forward Current 2.9 A Ves Drain-Source Diode Forward Ves = 0 V Is = 2.9 A (Note 2) 0.73 1.3 0							-	-
Qgs Gate-Source Charge Qgd Gate-Drain Charge VGS = 10 V 8.1 B Maximum Continuous Drain-Source Diode Forward Current VGS 0.73 VGS 0.73 VGS 0.73 VGS 0.73 VGS 0.73								ns
Qgs Gate-Source Orlarge 6.1 11 Qgd Gate-Drain Charge 9.2 n Drain-Source Diode Characteristics and Maximum Ratings 9.2 n Is Maximum Continuous Drain-Source Diode Forward Current 2.9 0 Ves Drain-Source Diode Forward Ves = 0.V Is = 2.9 A (Note 2) 0.73 1.3		C C		$\mathbf{D} = 0.1 \mathbf{A},$			53	nC
Drain–Source Diode Characteristics and Maximum Ratings Is Maximum Continuous Drain–Source Diode Forward Current 2.9 Urain–Source Diode Forward Vos = 0.V Is = 2.9 A (Note 2) 0.73 1.3								nC
IsMaximum Continuous Drain–Source Diode Forward Current2.9 V_{sp} Drain–Source Diode Forward $V_{cs} = 0.V$ $k = 2.9 \text{ A}$ (Note 2)0.731.3	Qgd	Gale-Drain Charge				9.2		nC
Use Drain–Source Diode Forward $V_{CS} = 0.V$ $k = 2.9 \text{ A}$ (Note 2) 0.73 1.3	Drain-So				r	T		
$V c_{P} = U V$ $ c_{P} = 2.9 \text{ A} (\text{Note 2}) $ $ U/3 U/3 $	s		ce Diode Forwa	ard Current			2.9	A
Voltage	V _{SD}	Voltage	$V_{GS}=0\ V,$	$I_{S} = 2.9 \text{ A}$ (Note 2)		0.73	1.3	V
Notes: 1. R _{RA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface						I		
		■ a) R _{aJA} = 40°C/W when mounted on a 1in ² pad of 2oz copper.	■:	b) R _{euA} = 96 ^o C/W on a minimum mounting pa				

www.onsemi.com 2

FDD3680

www.onsemi.com 3

4

FDD3680

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative