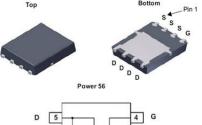
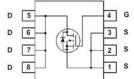


ON Semiconductor®

FDMS5360L-F085

N-Channel Power Trench[®] MOSFET **60V, 60A, 8.5m**Ω


Features


- Typ $r_{DS(on)}$ = 6.5m Ω at V_{GS} = 10V, I_D = 60A
- Typ $Q_{g(tot)}$ = 64nC at V_{GS} = 10V, I_D = 60A
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Integrated Starter/alternator
- Primary Switch for 12V Systems

MOSFET Maximum Ratings T_J = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		60	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C =25°C	60	•
	Pulsed Drain Current	T _C = 25°C	See Figure4	— A
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	115	mJ
P _D	Power Dissipation		150	W
	Derate above 25°C		1	W/ ^o C
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 175	°C
R _{0JC}	Thermal Resistance Junction to Case		1	°C/W
R _{0JA}	Maximum Thermal Resistance Junction to Ambient	(Note 3)	50	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS5360L	FDMS5360L-F085	Power 56	13"	12mm	3000 units

Notes:

1: Current is limited by junction temperature.

2: Starting $T_J = 25^{\circ}C$, L = 0.1mH, $I_{AS} = 48A$, $V_{DD} = 60V$ during inductor charging and $V_{DD} = 0V$ during time in avalanche 3: $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,JA}$ is determined by the user's board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

acteristics Drain to Source Breakdown Voltage Drain to Source Leakage Current				Тур	Max	Units
Ŭ						
Drain to Source Leakage Current	I _D = 250μA, \	V _{GS} = 0V	60	-	-	V
	V _{DS} =60V,		-	-	1	μA
	00	$T_{\rm J}$ = 175°C(Note 4)	-	-	1	mA
Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA
acteristics						
Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.0	1.9	3.0	V
Drain to Source On Resistance	I _D = 60A,	T _J = 25 ^o C	-	6.5	8.5	mΩ
			-	14.3	17.5	mΩ
	I _D = 60A,		-	8.7	10.5	mΩ
	V _{GS} = 4.5V	$T_{J} = 175^{\circ}C(Note 4)$	-	18.2	21.6	mΩ
Reverse Transfer Capacitance			-			pF
Reverse Transfer Capacitance	1 - 110112		-			
Cata Basistanaa				155	-	pF
Gate Resistance	f = 1MHz	W	-	1.3	-	Ω
Total Gate Charge at 10V	V _{GS} = 0 to 10	V $V_{DD} = 48V$	-	1.3 64	- 72	Ω nC
		V V _{DD} = 48V / I _D = 60A	-	1.3	-	Ω
(((Gate to Source Threshold Voltage Drain to Source On Resistance Characteristics nput Capacitance Dutput Capacitance	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_{ID} = 60A$, Drain to Source On Resistance $I_D = 60A$, $V_{GS} = 10V$ $I_D = 60A$, $V_{GS} = 4.5V$ $V_{GS} = 4.5V$ Characteristics nput Capacitance $V_{DS} = 30V$, $V_{S} = 30V$, $V_{f} = 1MHz$	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ $I_D = 60A$, $T_J = 25^{\circ}C$ $V_{GS} = 10V$ $T_J = 175^{\circ}C(Note 4)$ $I_D = 60A$, $T_J = 25^{\circ}C$ $V_{GS} = 4.5V$ $T_J = 175^{\circ}C(Note 4)$ Characteristicsnput Capacitance $V_{DS} = 30V$, $V_{GS} = 0V$,f = 1MHz	Gate to Source Threshold Voltage $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 1.0 $I_D = 60A$, $T_J = 25^{\circ}C$ - $V_{GS} = 10V$ $T_J = 175^{\circ}C(Note 4)$ - $I_D = 60A$, $T_J = 25^{\circ}C$ - $V_{GS} = 4.5V$ $T_J = 175^{\circ}C(Note 4)$ -Characteristicsnput CapacitanceV_{DS} = 30V, $V_{GS} = 0V$,-Characteristics	Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu A$ 1.0 1.9 $I_D = 60A, V_{GS} = 10V$ $T_J = 25^{\circ}C$ - 6.5 Drain to Source On Resistance $I_D = 60A, V_{GS} = 10V$ $T_J = 175^{\circ}C(Note 4)$ - 14.3 $I_D = 60A, V_{GS} = 4.5V$ $T_J = 25^{\circ}C$ - 8.7 - Characteristics $T_J = 175^{\circ}C(Note 4)$ - 18.2 Dutput Capacitance $V_{DS} = 30V, V_{GS} = 0V,$ - 3695 Dutput Capacitance $V_{DS} = 30V, V_{GS} = 0V,$ - 295	Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu A$ 1.0 1.9 3.0 ID aim to Source On Resistance ID = 60A, V_{GS} = 10V TJ = 25°C - 6.5 8.5 ID = 60A, V_{GS} = 10V TJ = 175°C(Note 4) - 14.3 17.5 ID = 60A, V_{GS} = 4.5V TJ = 25°C - 8.7 10.5 VGS = 4.5V TJ = 175°C(Note 4) - 18.2 21.6 Output Capacitance Up = 30V, V_{GS} = 0V, - 3695 - Up to the capacitance V_{DS} = 30V, V_{GS} = 0V, - 295 -

30
Trr
Q _{rr}
Notes:

4: The maximum value is specified by design at T_J = 175°C. Product is not tested to this condition in production.

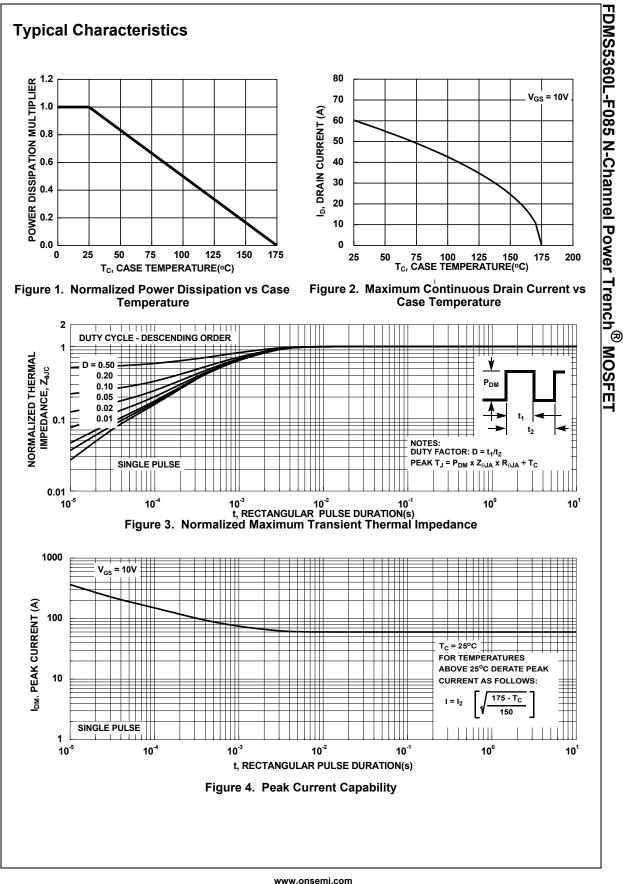
Reverse Recovery Time

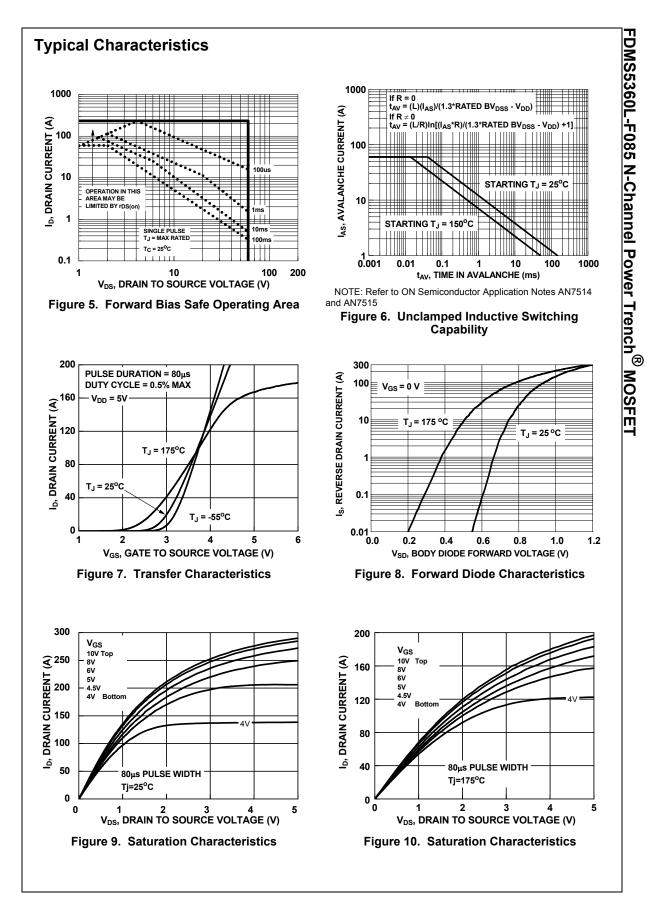
Reverse Recovery Charge

 $I_F = 60A$, $dI_{SD}/dt = 100A/\mu s$, $V_{DD}=48V$ 36

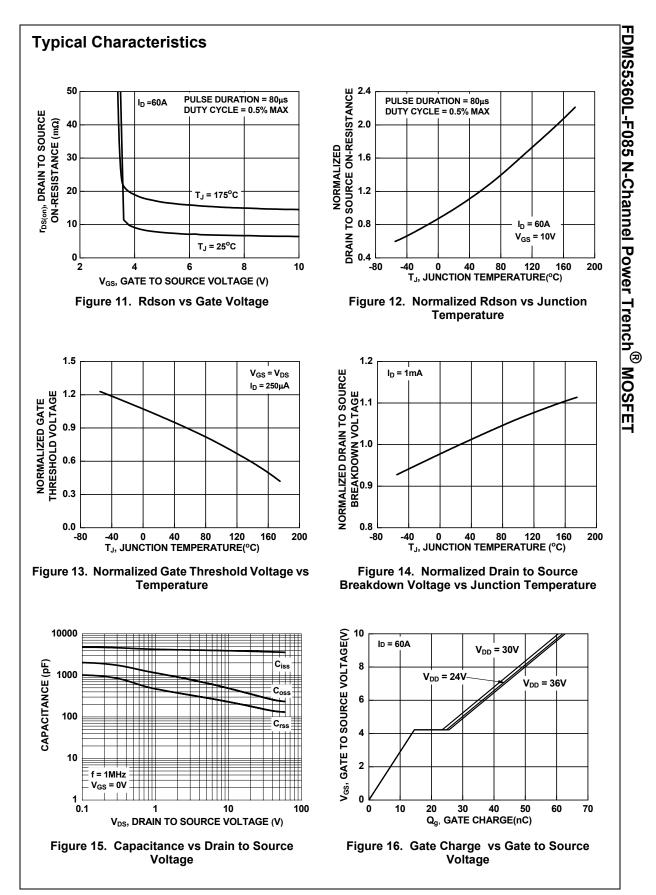
36

-


-


41

45


ns

nC

www.onsemi.com 4

www.onsemi.com 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative