FAIRCHILD

SEMICONDUCTOR®

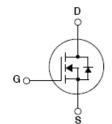
FDP8443

N-Channel PowerTrench[®] MOSFET

40V, 80A, 3.5m Ω

Features

- Typ $r_{DS(on)}$ = 2.7m Ω at V_{GS} = 10V, I_D = 80A
- Typ Q_{g(10)} = 142nC at V_{GS} = 10V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant


Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Steering
- Integrated Starter / Alternator
- Distributed Power Architecture and VRMs
- Primary Switch for 12V Systems

FDP SERIES

August 2007

©2007 Fairchild Semiconductor Corporation FDP8443 Rev. A

MOSFET Maximum Ratings T _C = 25°C unless otherwise noted						
Symbol	Parameter	Ratings	Units			
V _{DSS}	Drain to Source Voltage	40	V			
V _{GS}	Gate to Source Voltage	±20	V			
I _D	Drain Current Continuous (T _C < 144 ^o C, V _{GS} = 10V)	80				
	Continuous (T_{amb} = 25°C, V_{GS} = 10V, with $R_{\theta JA}$ = 62°C/W)	20	А			
	Pulsed	See Figure 4				
E _{AS}	Single Pulse Avalanche Energy (Note	e 1) 531	mJ			
D	Power Dissipation	188	W			
P _D	Derate above 25°C	1.25	W/ ^o C			
T _J , T _{STG}	Operating and Storage Temperature	-55 to +175	°C			

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance Junction to Case		0.8	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient	(Note 2)	62	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP8443	FDP8443	TO-220AB	Tube	N/A	50 units

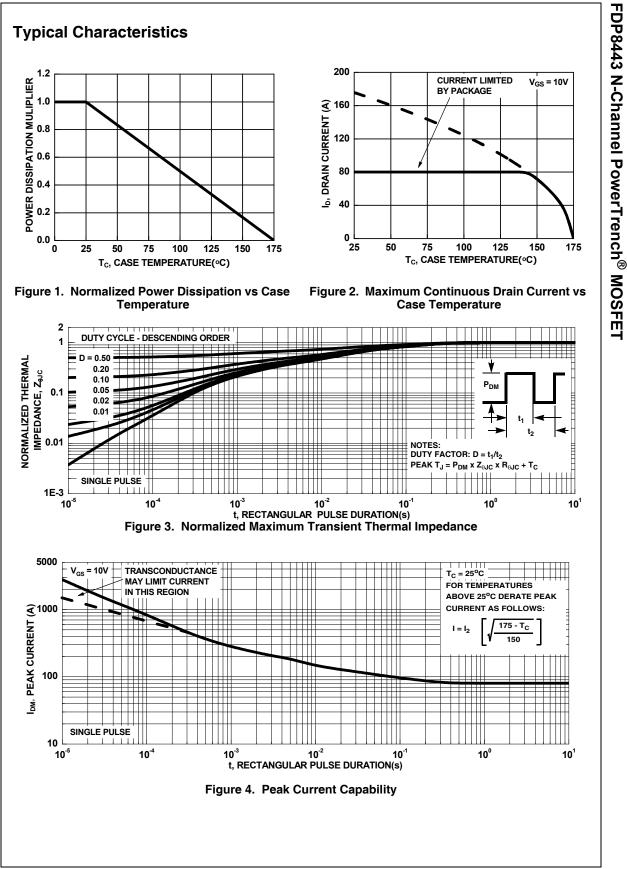
Electrical Characteristics T_{C} = 25°C unless otherwise noted

Symbol Parameter Test Conditions Min Typ Max Units
--

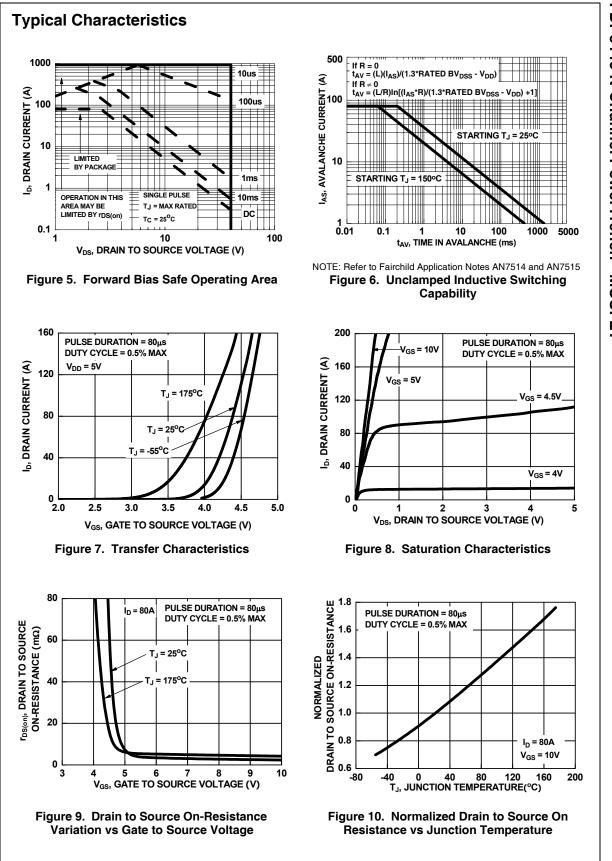
Off Characteristics

B_{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} =	$I_{D} = 250 \mu A, V_{GS} = 0V$		-	-	V
I _{DSS} Zero Gate Voltage Drain Current	Zoro Coto Voltago Drain Current	V _{DS} = 32V,		-	-	1	uА
	$V_{GS} = 0V$	T _C = 150°C	-	-	250	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

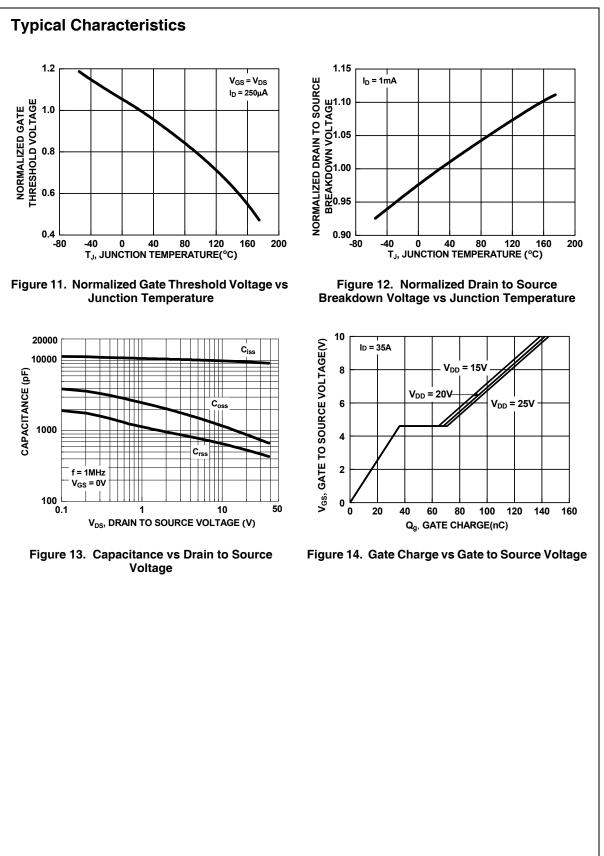
On Characteristics


V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.8	4	V
		I _D = 80A, V _{GS} = 10V	-	2.7	3.5	
r _{DS(on)}	Drain to Source On Resistance	I _D = 80A, V _{GS} = 10V, T _J = 175 ^o C	-	4.7	6.1	mΩ

Dynamic Characteristics


C _{iss}	Input Capacitance		0) (-	9310	-	pF
C _{oss}	Output Capacitance		V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		800	-	pF
C _{rss}	Reverse Transfer Capacitance			-	510	-	pF
R _G	Gate Resistance	V _{GS} = 0.5V, f = 1MHz		-	0.9	-	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	V_{GS} = 0 to 10V		-	142	185	nC
Q _{g(TH)}	Threshold Gate Charge	V_{GS} = 0 to 2V	V _{DD} = 20V	-	17.5	23	nC
Q _{gs}	Gate to Source Gate Charge		I _D = 35A	-	36	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau		l _g = 1mA	-	18.8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge			-	32	-	nC

	Test Conditions	Min	Тур	Max	Units
ing Characteristics (V _{GS}	= 10V)				
Turn-On Time		-	-	58	ns
Turn-On Delay Time		-	18.4	-	ns
Rise Time		-	17.9	-	ns
Turn-Off Delay Time	$V_{GS} = 100, R_{GS} = 202$	-	55	-	ns
Fall Time		-	13.5	-	ns
Turn-Off Time		-	-	109	ns
Source to Drain Diode Voltage	I _{SD} = 35A	-	0.8	1.25	V
Source to Drain Diode Voltage Reverse Recovery Time	I _{SD} = 35A I _{SD} = 15A 	-	0.8 0.8 42	1.25 1.0 55	V
)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} \mbox{Turn-On Delay Time} \\ \mbox{Rise Time} \\ \mbox{Turn-Off Delay Time} \\ \mbox{Fall Time} \\ \mbox{Turn-Off Time} \end{array} \qquad \begin{array}{c} \mbox{V}_{DD} = 20 \text{V}, \mbox{I}_{D} = 35 \text{A} \\ \mbox{V}_{GS} = 10 \text{V}, \mbox{R}_{GS} = 2 \Omega \\ $	$ \begin{array}{c c} \mbox{Turn-On Delay Time} \\ \hline \mbox{Rise Time} \\ \hline \mbox{Turn-Off Delay Time} \\ \hline \mbox{Fall Time} \\ \hline \mbox{Turn-Off Time} \\ \end{array} \\ \begin{array}{c c} \mbox{V}_{DD} = 20V, \ \mbox{I}_{D} = 35A \\ \mbox{V}_{GS} = 10V, \ \mbox{R}_{GS} = 2\Omega \\ \hline \mbox{I}_{GS} = 10V, \ \mbox{R}_{GS} = 2\Omega \\ \hline \mbox{I}_{GS} = 10V, \ \mbox{R}_{GS} = 2\Omega \\ \hline \mbox{I}_{GS} = 10V, \ \mbox{R}_{GS} =$	Turn-On Delay Time $V_{DD} = 20V, I_D = 35A$ Rise Time $V_{GS} = 10V, R_{GS} = 2\Omega$ Turn-Off Delay Time - Fall Time - Turn-Off Time - Turn-Off Time -


This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

FDP8443 Rev. A

FDP8443 N-Channel PowerTrench® MOSFET

FDP8443 N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ **EcoSPARK**[®] Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ **FRFET**® Global Power ResourceSM

Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ **ISOPLANAR™** MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ **OPTOLOGIC[®] OPTOPLANAR[®]** R PDP-SPM™ Power220[®]

Power247[®] **POWEREDGE[®]** Power-SPM™ PowerTrench® Programmable Active Droop™ **QFET**® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6

TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™

UHC®

VCX™

UniFET™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 131