

Is Now Part of

ON Semiconductor®

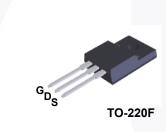
To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FDPF770N15A N-Channel PowerTrench[®] MOSFET 150 V, 10 A, 77 m Ω

Features


- $R_{DS(on)}$ = 60 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 10 A
- Fast Switching Speed
- Low Gate Charge
- High Performance Trench Technology for Extremely Low $R_{\text{DS}(\text{on})}$
- High Power and Current Handling Capability
- RoHS Compliant

Description

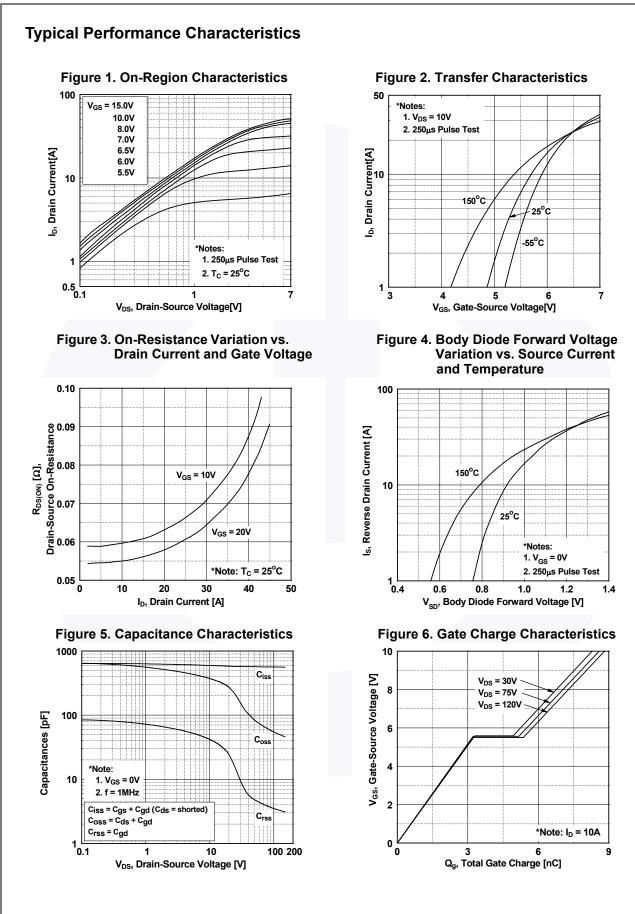
This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been tailored to minimize the on-state resistance while maintaining superior switching performance.

Applications

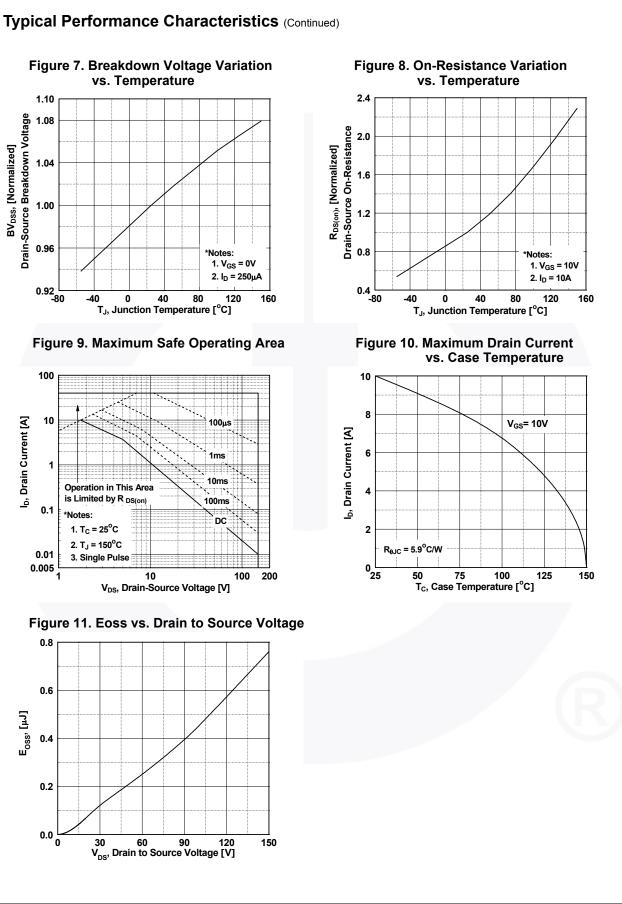
- Consumer Appliances
- LED TV
- · Synchronous Rectification for ATX / Sever / Telecom PSU
- Uninterruptible Power Supply
- Micro Solar Inverter

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

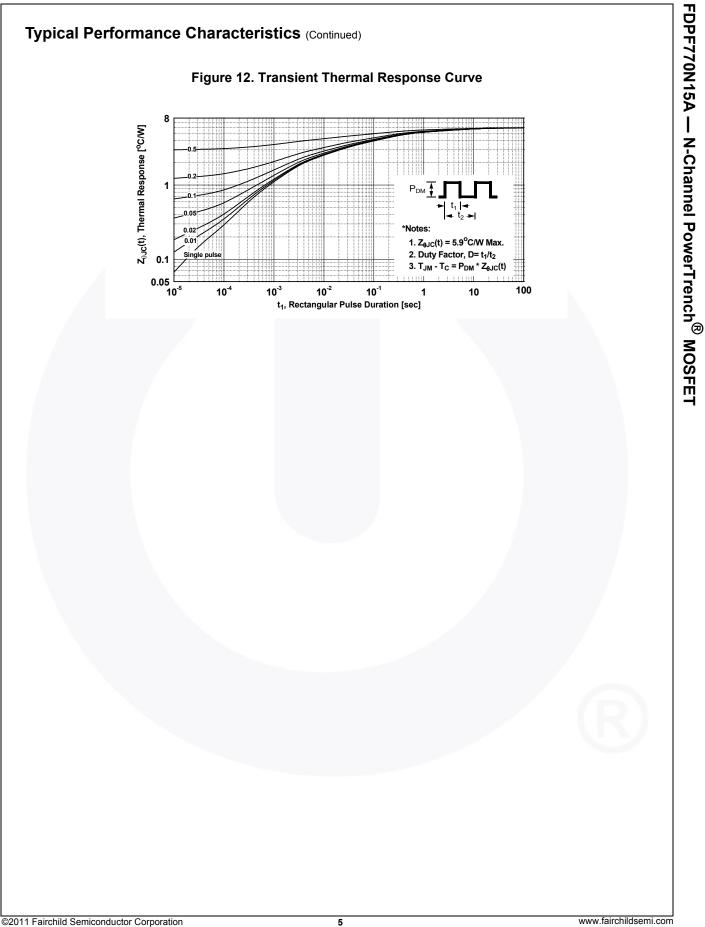
Symbol		Parameter	FDPF770N15A	Unit V	
V _{DSS}	Drain to Source Voltage		150		
V _{GSS}	Gate to Source Voltage	- DC	±20	- V	
	Gate to Source voltage	- AC (f > 1 Hz)	±30		
ID	Drain Current	- Continuous (T _C = 25 ^o C,Silicon Limited)	10	А	
	Drain Current	- Continuous (T _C = 100 ^o C,Silicon Limited)	7		
I _{DM}	Drain Current	- Pulsed (Note 1)	40	Α	
E _{AS}	Single Pulsed Avalanche Energ	35	mJ		
dv/dt	Peak Diode Recovery dv/dt	6.0	V/ns		
P _D	Power Dissipation	$(T_{\rm C} = 25^{\rm o}{\rm C})$	21	W	
	Fower Dissipation	- Derate Above 25°C	0.17	W/ºC	
T _J , T _{STG}	Operating and Storage Tempera	-55 to +150	°C		
TL	Maximum Lead Temperature for	300	°C		

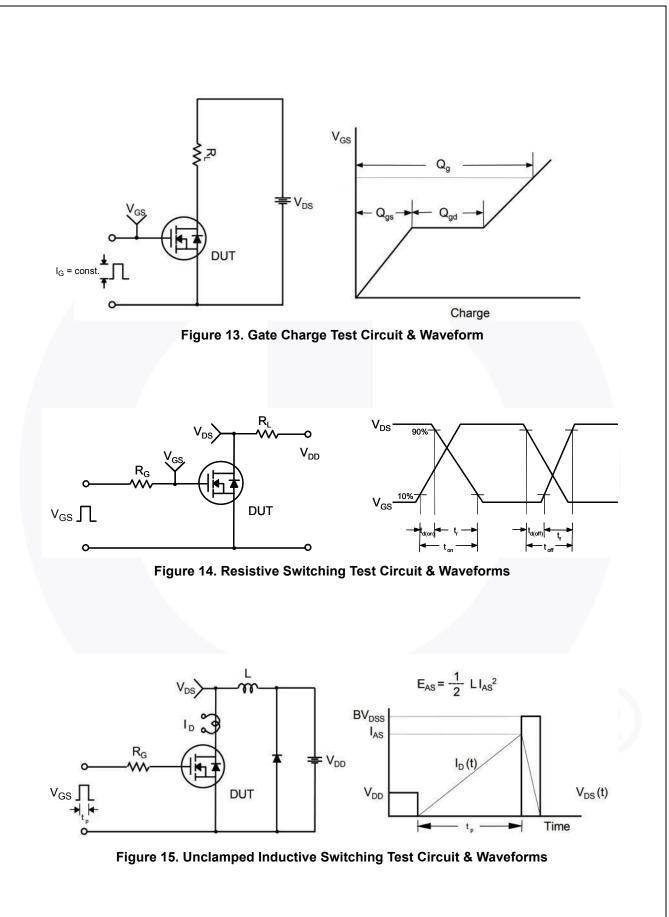

Thermal Characteristics

Symbol	Parameter	FDPF770N15A	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	5.9	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W

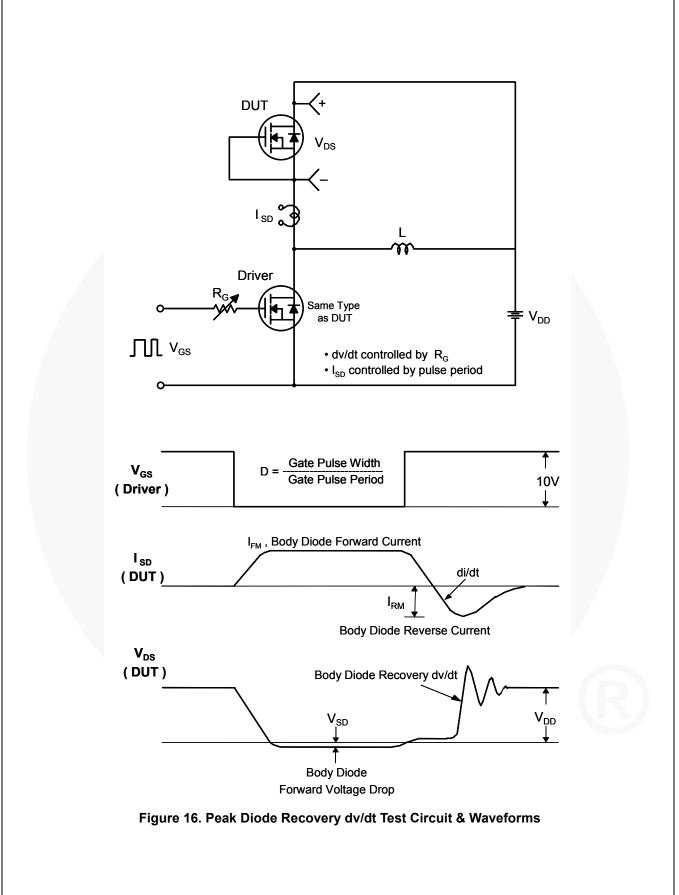

March 2015

Part NU	Part Number		Package	Packing Method	Reel Siz	e T	Tape Width	Qu	antity
		TO-220F	Tube	N/A		N/A	50	50 units	
Electrica	l Chara	acteristics T _C = 2	5ºC unless o	otherwise noted.					
Symbol	Parameter			Test Conditions			Тур.	Max.	Unit
Off Charac	teristics	j i							
BV _{DSS}	Drain to Source Breakdown Voltage		tage	I _D = 250 μA, V _{GS} = 0 V			-	-	V
ABV _{DSS}	Breakdown Voltage Temperature		0			150	0.4		V/00
$/\Delta T_J$	Coefficient			$I_D = 250 \ \mu$ A, Referenced to 25° C		-	- 0.1 -	-	V/ºC
	Zero Gate Voltage Drain Current		t	V _{DS} = 120 V, V _{GS} = 0 V		-	-	1	μA
DSS	2010 000			V _{DS} = 120 V, T _C = 125		-	-	500	μΑ
I _{GSS}	Gate to Body Leakage Current			$V_{GS} = \pm 20 V, V_{DS} = 0 V$	V	-	-	±100	nA
On Charac	teristics								
V _{GS(th)}		reshold Voltage		V _{GS} = V _{DS} , I _D = 250 μι	A	2.0		4.0	V
R _{DS(on)}		Static Drain to Source On Resistance		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$			60	77	mΩ
9FS	Forward	Forward Transconductance		$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$			15	-	S
	horooto	riation					1		
Dynamic C							676	765	~
C _{iss}	· · ·	pacitance		– V _{DS} = 75 V, V _{GS} = 0 V,		-	575 64	765 85	pF pF
C _{oss}		•		f = 1 MHz	-	-	3.9	65	
C _{rss}		everse Transfer Capacitance nergy Related Output Capacitance		V _{DS} = 75 V, V _{GS} = 0 V	,	-	3.9 113	-	pF pF
C _{oss(er)}	0,	te Charge at 10V		v _{DS} = 75 v, v _{GS} = 0 v			8.6	- 11.2	nC
Q _{g(tot)} Q _{gs}		Source Gate Charge				_	3.2	-	nC
Q _{gs2}		arge Threshold to Plate	au	V _{DS} = 75 V,I _D = 10 A, V _{GS} = 10 V	-	-	1.2	-	nC
Q _{gd}		Drain "Miller" Charge		(Note 4)		-	1.9	-	nC
ESR		nt Series Resistance (G	G-S)	f = 1 MHz		-	0.5	-	Ω
Switching	Charact	oristics			I		1 .		
		Delay Time					12	34	ns
t _{d(on)} t	Turn-On Rise Time			V_{DD} = 75 V, I _D = 10 A, V _{GS} = 10 V, R _G = 4.7 Ω		-	8	26	ns
r tavato		Turn-Off Delay Time Turn-Off Fall Time					15	40	ns
t _{d(off)} t _f				(Note 4)			3	16	ns
		e Characteristics			(_		_
	I		ource Diode					10	A
I <u>s</u> I _{SM}		m Continuous Drain to Source Diode Forward Current m Pulsed Drain to Source Diode Forward Current				_	-	40	A
V _{SD}		Source Diode Forward			-	-	1.25	V	
t _{rr}		Recovery Time		$V_{GS} = 0 V, I_{SD} = 10 A, V_{DD} = 75 V,$		-	59	-	ns
Q _{rr}		Recovery Charge		$dI_{F}/dt = 100 A/\mu s$		-	124	-	nC

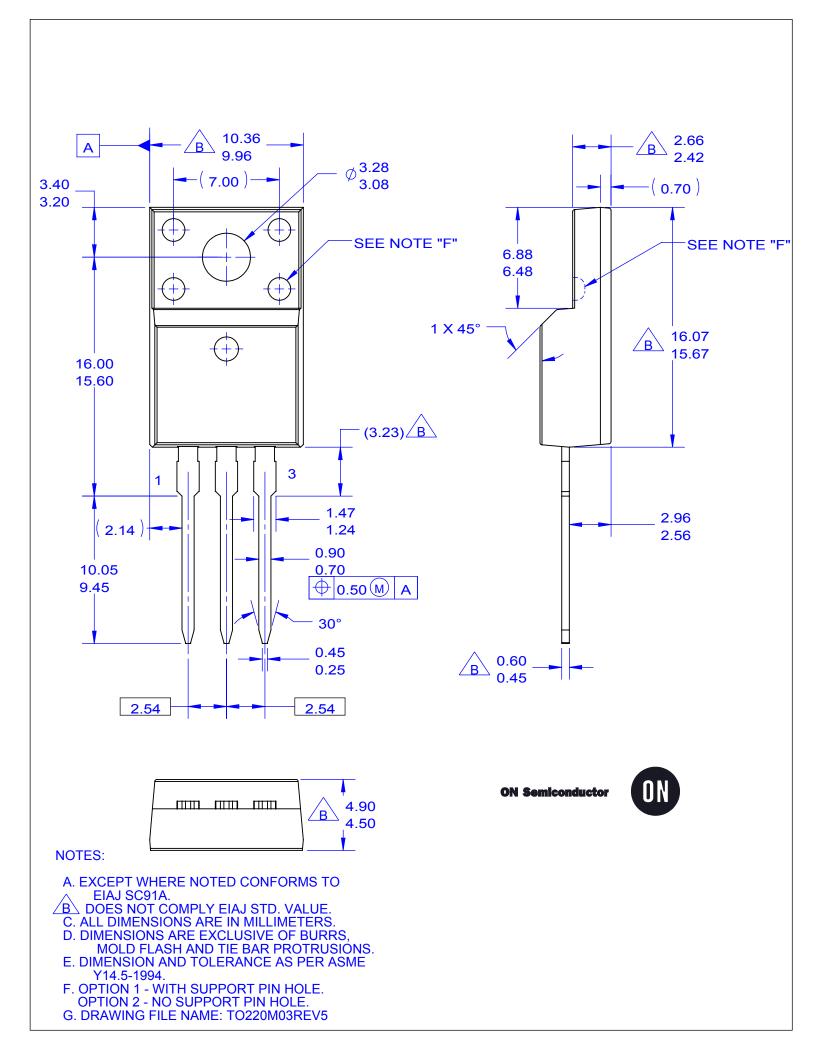




www.fairchildsemi.com



©2011 Fairchild Semiconductor Corporation FDPF770N15A Rev. 1.4



FDPF770N15A — N-Channel PowerTrench[®] MOSFET

FDPF770N15A — N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC