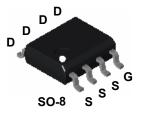
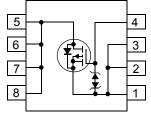


ON Semiconductor®

FDS6673BZ-F085 P-Channel PowerTrench[®] MOSFET -30V, -14.5A, 7.8mΩ

General Description


This P-Channel MOSFET is produced using ON Semiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance.


This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

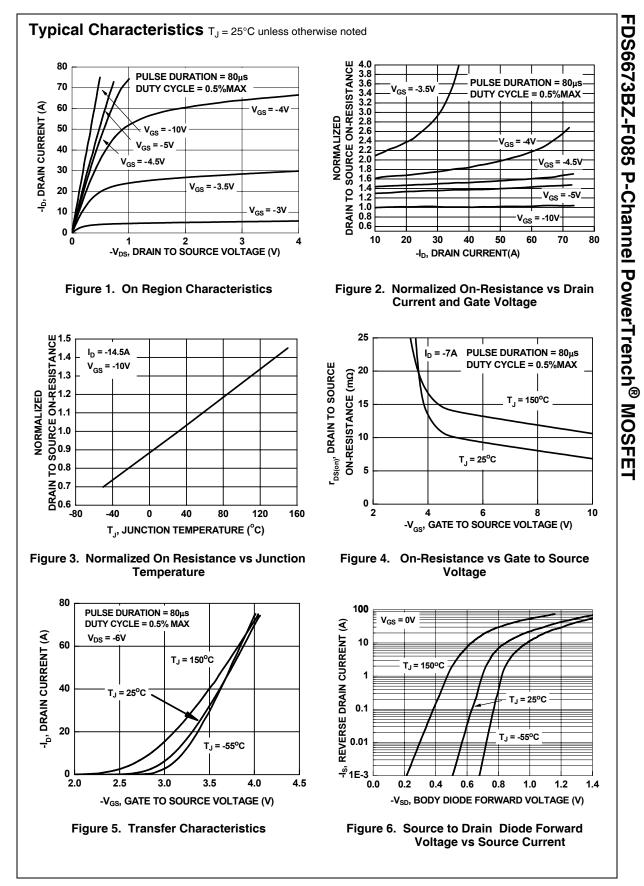
Features

- Max $r_{DS(on)} = 7.8 m\Omega$, $V_{GS} = -10V$, $I_D = -14.5A$
- Max $r_{DS(on)} = 12m\Omega$, $V_{GS} = -4.5V$, $I_D = -12A$
- Extended V_{GS} range (-25V) for battery applications
- HBM ESD protection level of 6.5kV typical (note 3)
- High performance trench technology for extremely low r_{DS(on)}
- DS(on)
 High power and current handling capability
- RoHS compliant
- Qualified to AEC Q101

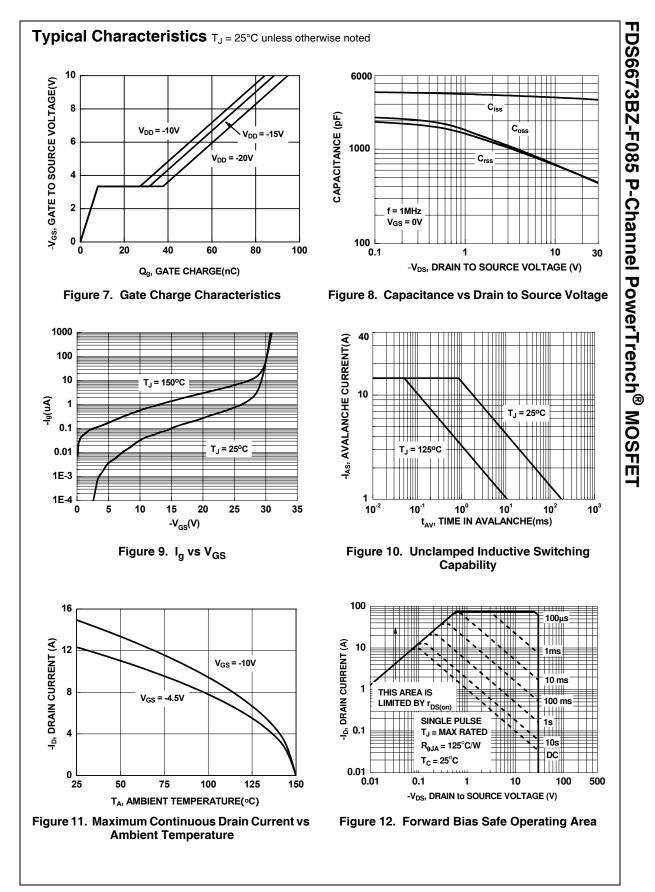
MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		-30	V
V _{GS}	Gate to Source Voltage		±25	V
I _D	Drain Current -Continuous (N	ote1a)	-14.5	Α
	-Pulsed		-75	Α
P _D	Power Dissipation for Single Operation (N	lote1a)	2.5	
	1)	lote1b)	1.2	W
	1)	lote1c)	1.0	
T _J , T _{STG}	Operating and Storage Temperature		-55 to 150	°C

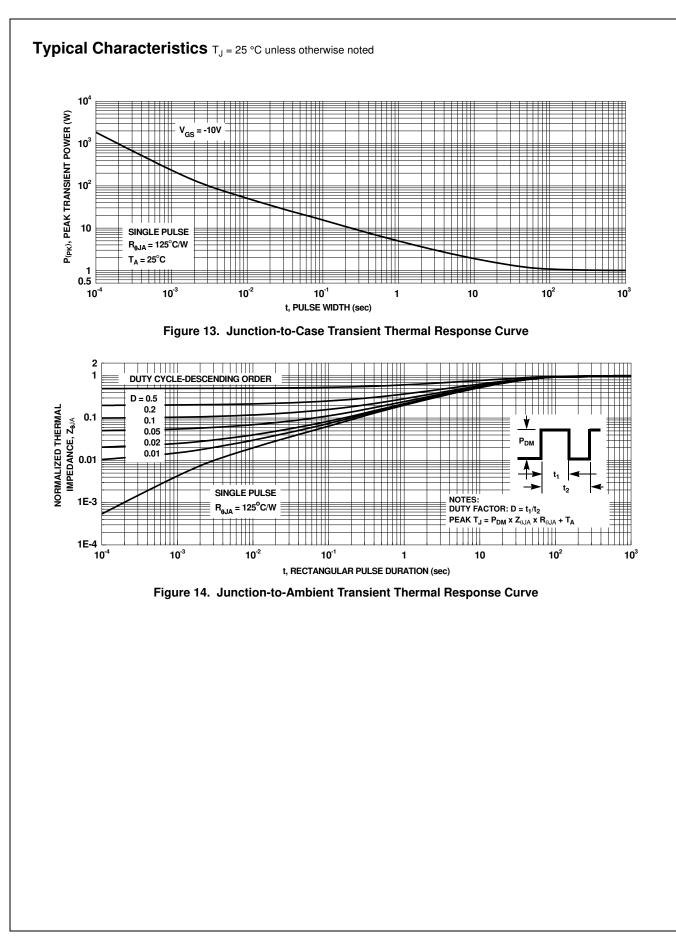
Thermal Characteristics


R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case (Note 1)	25	°C/W

Package Marking and Ordering Information


Device Marking	Device	Reel Size	Tape Width	Quantity
FDS6673BZ	FDS6673BZ-F085	13"	12mm	2500 units

	Parameter	Test Conditions	Min	Тур	Max	Units
B _{VDSS}	cteristics					
AB _{VDSS}	Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-30			V
ΔT_{J}	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, referenced to $25^{\circ}C$		-20		mV/°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = -24V, V _{GS} = 0V			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25V, V_{DS} = 0V$			±10	μA
	cteristics (Note 2)					
	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \mu A$	-1	-1.9	-3	V
V _{GS(th)} ∆V _{GS(th)}	Gate to Source Threshold Voltage	$I_D = -250\mu A$, referenced to	-1	-1.5	-0	v
ΔT_J	Temperature Coefficient	25°C		8.1		mV/°C
	Drain to Source On Resistance	V _{GS} = -10V , I _D = -14.5A		6.5	7.8	mΩ
		V _{GS} = -4.5V, I _D = -12A		9.6	12	
r _{DS(on)}		$V_{GS} = -10V, I_D = -14.5A$ $T_J = 125^{\circ}C$		9.7	12	
9 _{FS}	Forward Transconductance	V _{DS} = -5V, I _D = -14.5A		60		S
Jynamic (Characteristics		-	r.		
C _{iss}	Input Capacitance			3500	4700	pF
C _{oss}	Output Capacitance	V _{DS} = -15V, V _{GS} = 0V,		600	800	pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz		600	900	pF
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time			14	26	ns
t _r	Rise Time	$V_{DD} = -15V$, $I_D = -1A$ $V_{GS} = -10V$, $R_{GS} = 6Ω$		16	29	ns
t _{d(off)}	Turn-Off Delay Time			225	306	ns
t _f	Fall Time			105	167	ns
Qg	Total Gate Charge	$V_{DS} = -15V, V_{GS} = -10V,$ $I_{D} = -14.5A$		88	124	nC
Qg	Total Gate Charge	V _{DS} = -15V, V _{GS} = -5V,		46	65	nC
Q _{gs}	Gate to Source Gate Charge	$I_{\rm D} = -14.5 {\rm A}$		8		nC
Q _{gd}	Gate to Drain Charge			23.5		nC
Drain-Sou	rce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltag	e V _{GS} = 0V, I _S = -2.1A		-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	$I_F = 14.5A$, di/dt = 100A/µs			45	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 14.5A$, di/dt = 100A/µs			34	nC


FDS6673BZ-F085 P-Channel PowerTrench® MOSFET

www.onsemi.com 3

www.onsemi.com 4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative