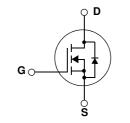


FQA9N90C 900V N-Channel MOSFET

Features

- 9A, 900V, $R_{DS(on)}$ = 1.4 Ω @V_{GS} = 10 V Low gate charge (typical 45 nC)
- Low Crss (typical 14pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability



Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies, active power factor correction, electronic lamp ballast based on half bridge topology.

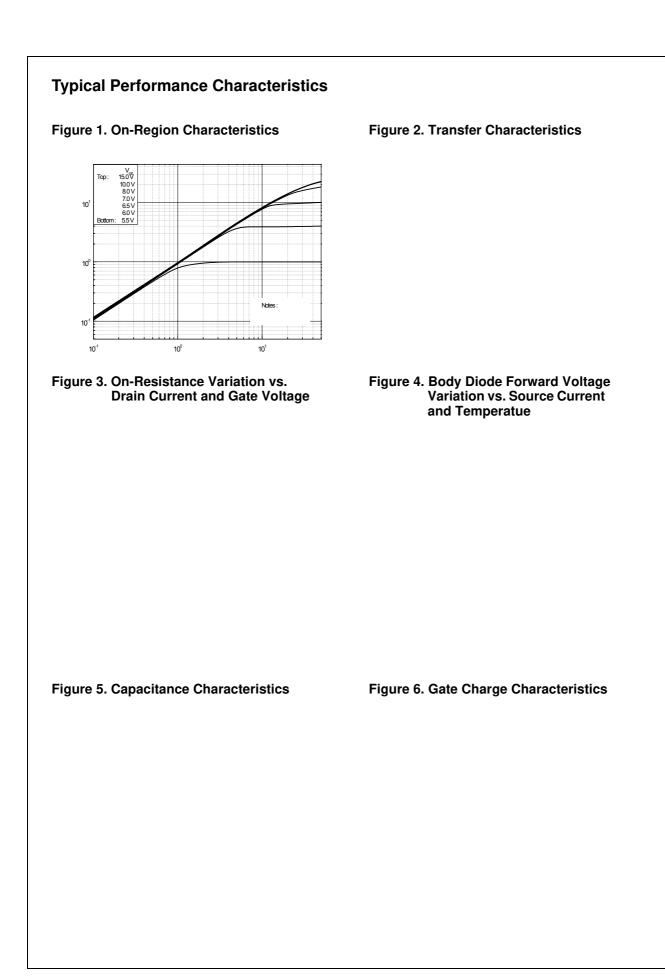
Absolute Maximum Ratings

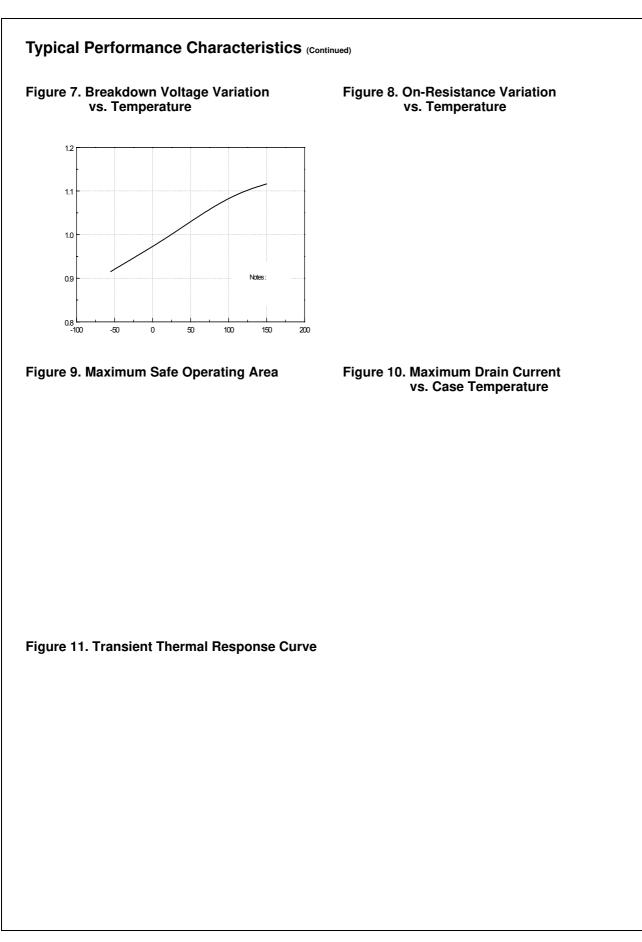
Symbol		Parameter		FQA9N90C	Units
V _{DSS}	Drain-Source Vo	rce Voltage		900	V
I _D	Drain Current	- Continuous (T _C = 25°C)		9.0	А
		- Continuous (T _C = 100°C)		5.7	А
I _{DM}	Drain Current	- Pulsed	(Note 1)	36	А
V _{GSS}	Gate-Source Vol	tage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	900	mJ
I _{AR}	Avalanche Current		(Note 1)	9.0	А
E _{AR}	Repetitive Avala	nche Energy	(Note 1)	28	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.0	V/ns
P _D	Power Dissipatio	Power Dissipation ($T_{\rm C}$ = 25°C)		280	W
		- Derate above 25°C		2.22	W/°C
T _J , T _{STG}	Operating and S	torage Temperature Range		-55 to +150	°C
TL	Maximum lead te	emperature for soldering purposes,			

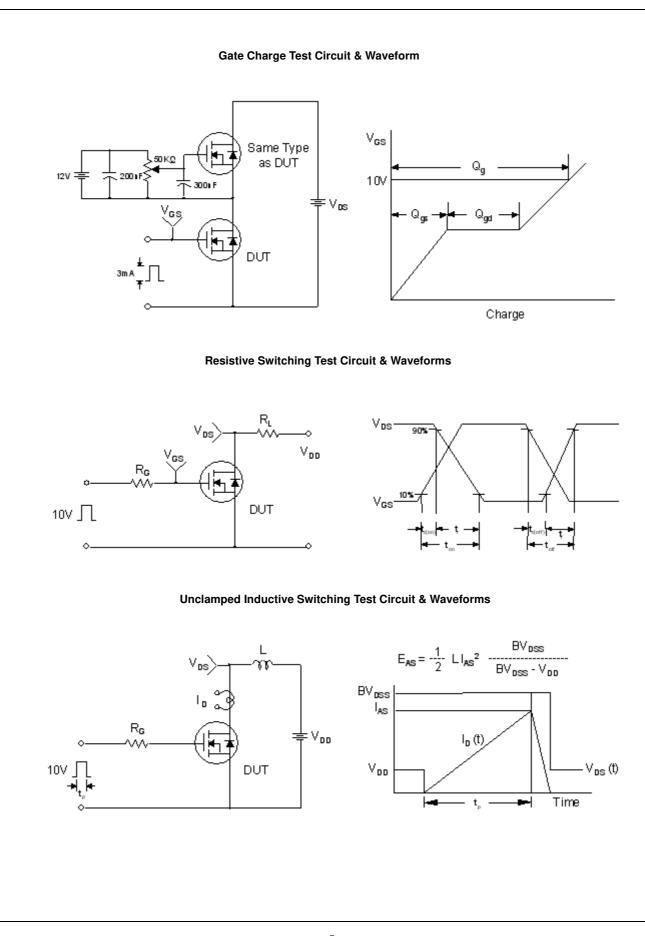
Thermal Characteristics

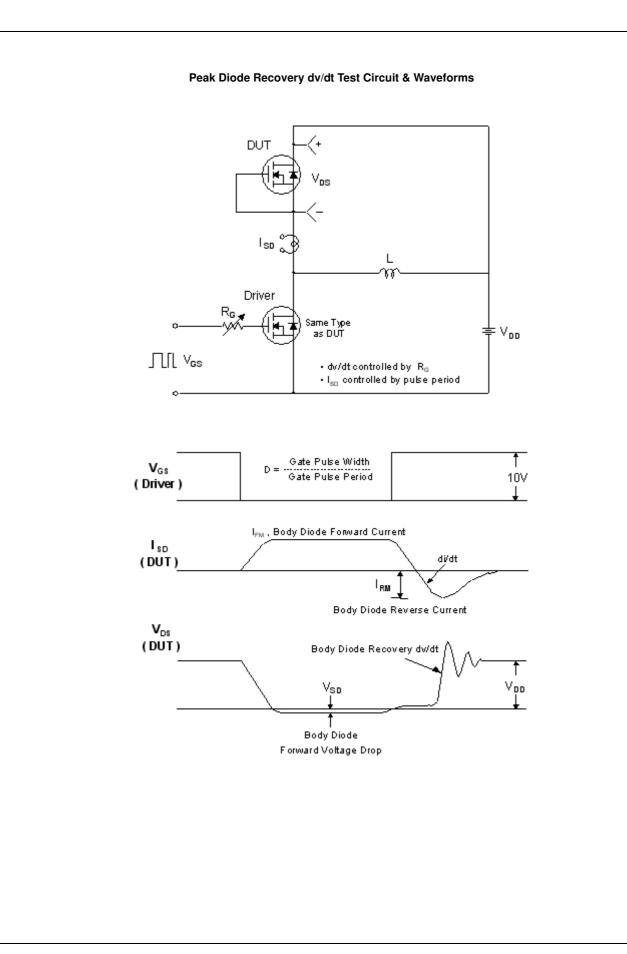
1/8

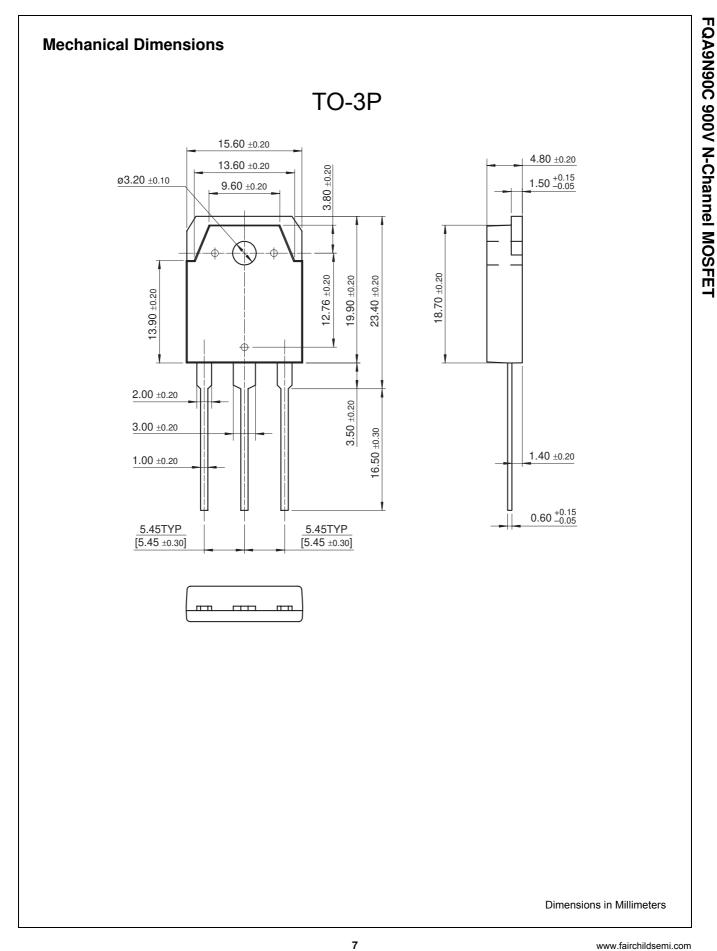
Device Marking		Device	Packag	e Re	Reel Size	Тар	Tape Width		Quantity	
FQA9N90C		FQA9N90C	TO-3P						30	
FQA9N90C FQA9N90C_F109 TO		TO-3PN	۰ ا				30			
						•				
	al Cha	racteristics T _c	= 25°C unless othe	1				1	1	1
Symbol		Parameter		Test	Conditio	ns	Min	Тур	Max	Units
Off Charac	teristics									
BV _{DSS}	Drain-So	urce Breakdown Voltag	ge	V_{GS} = 0 V, I_D	= 250 μA		900			V
∆BV _{DSS} / ∆T _J	Breakdown Voltage Temperature Coefficient		I_D = 250 µA, Referenced to 25°C			0.99		V/°C		
I _{DSS}	Zero Gate Voltage Drain Current			V _{DS} = 900 V,	V _{GS} = 0 V				10	μA
				V _{DS} = 720 V, T _C = 125°C					100	μA
I _{GSSF}	Gate-Boo	ly Leakage Current, F	orward	V_{GS} = 30 V, V_{DS} = 0 V					100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse		V_{GS} = -30 V, V_{DS} = 0 V				-100	nA		
On Charact	eristics							1		1
V _{GS(th)}	Gate Thre	ate Threshold Voltage		V_{DS} = V_{GS} , I_D = 250 μ A		3.0		5.0	V	
R _{DS(on)}	Static Dra	tatic Drain-Source On-Resistance		V _{GS} = 10 V, I _D = 4.5 A			1.12	1.4	Ω	
9 _{FS}	Forward Transconductance		$V_{DS} = 50 \text{ V}, I_D = 4.5 \text{ A}$ (Note 4)			9.2		S		
Dynamic Ch	naracteristi	ics							1	
C _{iss}	Input Cap	out Capacitance tput Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			2100	2730	pF	
C _{oss}							175	230	pF	
C _{rss}	Reverse Transfer Capacitance						14	18	pF	
Switching C	haracteris	tics		1						
t _{d(on)}	Turn-On	Turn-On Delay Time		V_{DD} = 450 V, I _D = 11.0A, R _G = 25 Ω			50	110	ns	
t _r	Turn-On Rise Time Turn-Off Delay Time					120	250	ns		
t _{d(off)}						100	210	ns		
t _f	Turn-Off	Fall Time				(Note 4, 5)		75	160	ns
Qg	Total Gat	e Charge		V _{DS} = 720 V, I _D = 11.0A,				45	58	nC
Q _{gs}	Gate-Sou	Irce Charge		V _{GS} = 10 V				13		nC
Q _{gd}	Gate-Dra	in Charge		-		(Note 4, 5)		18		nC
	e Diode C	haracteristics and Max	kimum Ratings					<u> </u>	1	<u> </u>
I _S		n Continuous Drain-So							9.0	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward		d Current					36	Α	
V _{SD}	Drain-So	urce Diode Forward Vo	oltage	V_{GS} = 0 V, I _S	=9.0 A				1.4	V
t _{rr}	Reverse	Recovery Time		V_{GS} = 0 V, I _S				550		ns
Q _{rr}	Reverse	Recovery Charge		dl _F / dt = 100 A/μs		(Note 4)		6.5		μC

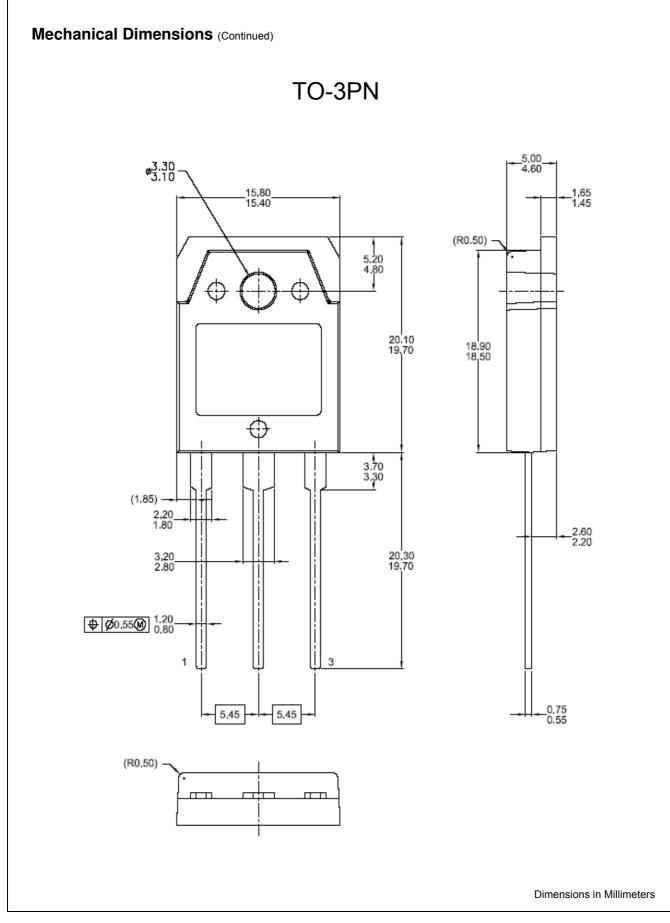

1. Repetitive Rating : Pulse width limited by maximum junction temperature


2. L = 21mH, I_{AS} =9.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C


3. I_{SD} \leq 9.0A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS,} Starting ~T_J = 25°C


4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$


5. Essentially independent of operating temperature



FQA9N90C 900V N-Channel MOSFE

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	Green FPS™ e-Series™	POWEREDGE®	SuperSOT™-8
Build it Now™	GOT™	Power-SPM™	SyncFET™
CorePLUS™	<i>i-Lo</i> ™	PowerTrench [®]	The Power Franchise [®]
CROSSVOLT™	IntelliMAX™	Programmable Active Droop™	() ™
CTL™	ISOPLANAR™	QFET®	TinyBoost™
Current Transfer Logic™	MegaBuck™	QS™	TinyBuck™
EcoSPARK [®]	MICROCOUPLER™	QT Optoelectronics™	TinyLogic [®]
FACT Quiet Series™	MicroFET™	Quiet Series™	TINYOPTO™
FACT [®]	MicroPak™	RapidConfigure™	TinyPower™
FAST [®]	Motion-SPM™	SMART START™	TinyPWM™
FastvCore™	OPTOLOGIC [®]	SPM [®]	TinyWire™
FPS™	OPTOPLANAR®	STEALTH™	µSerDes™
FRFET [®]	PDP-SPM™	SuperFET™	UHC [®]
Global Power Resource SM	Power220 [®]	SuperSOT™-3	UniFET™
Green FPS™	Power247 [®]	SuperSOT™-6	VCX™

DISCLAIMER

DISOLATIVE FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for refer- ence information only.		

Rev. 129