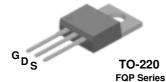
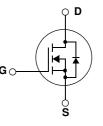


FQP12N60C / FQPF12N60C 600V N-Channel MOSFET

Features


- 12A, 600V, $R_{DS(on)}$ = 0.65 Ω @V_{GS} = 10 V Low gate charge (typical 48 nC)
- Low Crss (typical 21pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability •
- **RoHS** compliant

Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies, active power factor correction, electronic lamp ballast based on half bridge topology.

GDS

September 2007

Absolute Maximum Ratings

Symbol	Parameter		FQP12N60C	FQPF12N60C	Unit
V _{DSS}	Drain-Source Voltage	600		V	
ID		tinuous (T _C = 25°C) tinuous (T _C = 100°C)	12 7.4	12* 7.4*	A A
I _{DM}	Drain Current - Puls	ed (Note 1)	48	48*	А
V _{GSS}	Gate-Source voltage	± 30		V	
E _{AS}	Single Pulsed Avalanche Energy		870		mJ
I _{AR}	Avalanche Current	(Note 1)	12		А
E _{AR}	Repetitive Avalanche Energy (No		22.5		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3		4.5		V/ns
P _D	Power Dissipation (T _C = - Dera	25°C) ate above 25°C	225 1.78	51 0.41	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
Τ _L	Maximum Lead Temperature 1/8" from Case for 5 Seconds	300		°C	

*Drain current limited by maximum junction temperature

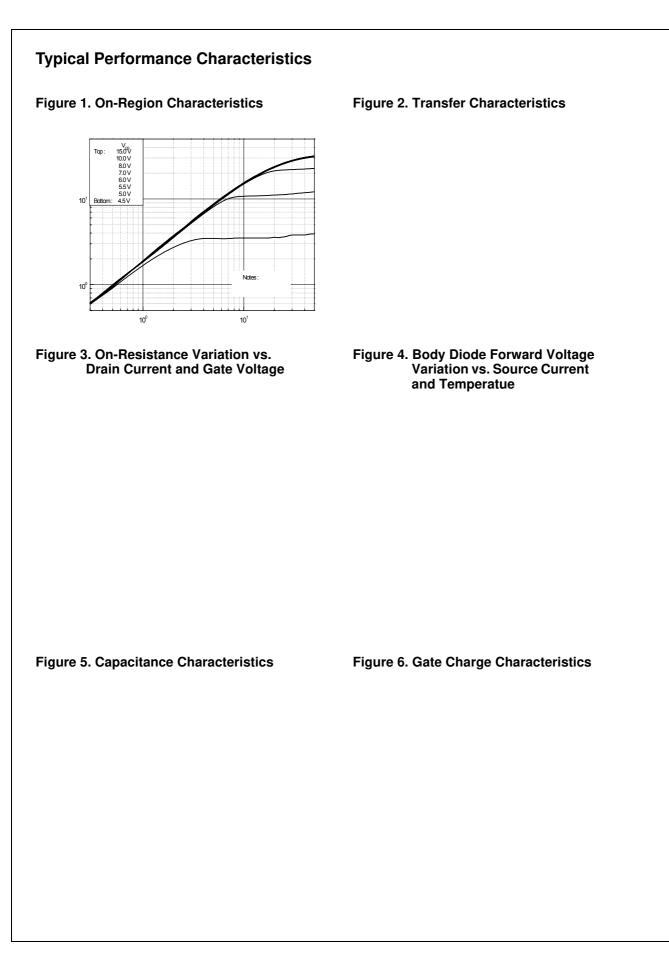
Thermal Characteristics

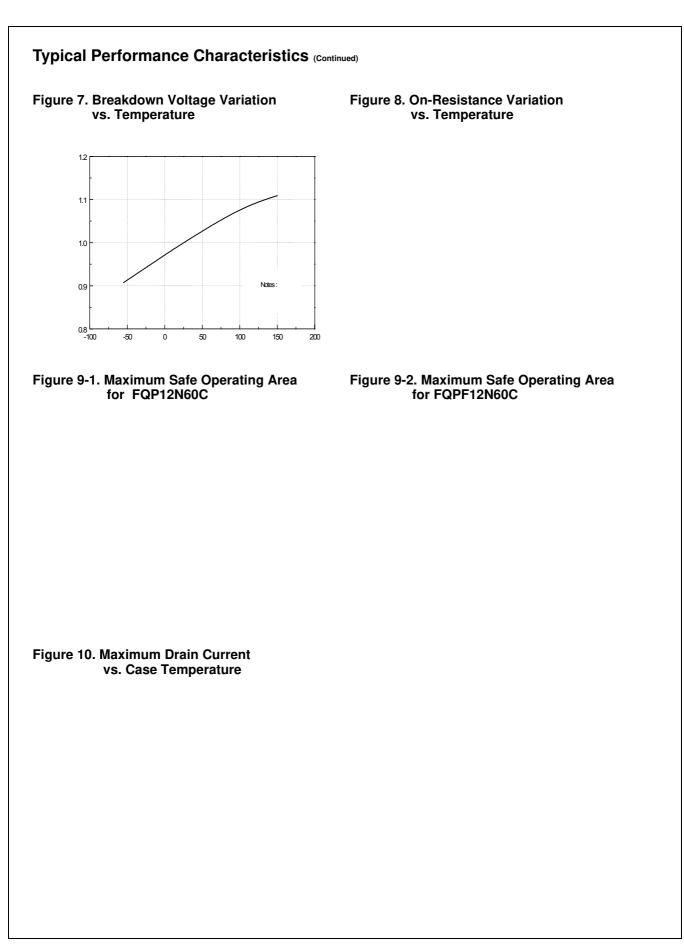
Symbol	Parameter	FQP12N60C	FQPF12N60C	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	0.56	2.43	°C/W
$R_{ hetaJS}$	Thermal Resistance, Case-to-Sink Typ.	0.5		°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient	62.5	62.5	°C/W

FQP12N60C /
FQPF12N60C
600V N
-Channel N
MOSFET

		ckage Reel Size Tape		e Width		Quantity				
		TC	D-220 -		-		50			
FQPF12	N60C	FQPF12N60C	TO	-220F	-		-		50	
Electric	al Char	racteristics T _c	= 25°C unle	ss otherwise no	ted					
Symbol		Parameter			Conditions		Min	Тур	Max	Units
Off Charac	teristics			•				•	4	
BV _{DSS}	Drain-Sou	urce Breakdown Voltage		V _{GS} = 0V,	I _D = 250μA, T _J = 25°0)	600			V
ΔΒV _{DSS} / ΔT _J	Breakdow Coefficier	wn Voltage Temperature		$I_D = 250 \mu A$, Referenced to 25°C			0.5		V/°C	
I _{DSS}	Zero Gate	te Voltage Drain Current		$V_{DS} = 600V, V_{GS} = 0V$ $V_{DS} = 480V, T_{C} = 125^{\circ}C$				1 10	μΑ μΑ	
I _{GSSF}	Gate-Bod	y Leakage Current, Fo	orward	V _{GS} = 30V	, V _{DS} = 0V				100	nA
I _{GSSR}	Gate-Bod	dy Leakage Current, Reverse		V _{GS} = -30V, V _{DS} = 0V				-100	nA	
On Charac	teristics			•						
V _{GS(th)}	Gate Thre	Gate Threshold Voltage		$V_{DS} = V_{GS}$, I _D = 250μA		2.0		4.0	V
R _{DS(on)}	Static Dra On-Resist)rain-Source sistance		V _{GS} = 10V, I _D = 6A			0.53	0.65	Ω	
9 _{FS}	Forward 1	d Transconductance		V _{DS} = 40V	′, I _D = 6A	(Note 4)		13		S
Dynamic C	haracteris	tics								
C _{iss}	Input Cap	ut Capacitance put Capacitance		V _{DS} = 25V, V _{GS} = 0V, f = 1.0MHz			1760	2290	pF	
C _{oss}	Output Ca						182	235	pF	
C _{rss}	Reverse Transfer Capacitance						21	28	pF	
Switching	Characteri	stics								
t _{d(on)}	Turn-On Delay Time		$V_{DD} = 300V, I_D = 12A$			30	70	ns		
t _r	Turn-On F	Rise Time		$R_{G} = 25\Omega$			85	180	ns	
t _{d(off)}	Turn-Off [Delay Time					140	280	ns	
t _f	Turn-Off F	Fall Time				(Note 4, 5)		90	190	ns
Qg	Total Gate	e Charge		$V_{DS} = 400V, I_D = 12A$ $V_{GS} = 10V$				48	63	nC
Q _{gs}	Gate-Sou	rce Charge						8.5		nC
Q _{gd}	Gate-Drai	e-Drain Charge		(Note 4, 5)			21		nC	
Drain-Sour	ce Diode (Characteristics and I	Maximum	n Ratings						
I _S Maximum Continuous Drain-Source Dio		le Forward	Current				12	Α		
I _{SM}	Maximum	Pulsed Drain-Source	Diode Fo	orward Curre	ent				48	Α
V _{SD}	Drain-Sou	Irce Diode Forward Ve	oltage	V_{GS} = 0V,	I _S = 12A				1.4	V
t _{rr}	Reverse F	Recovery Time		$V_{GS} = 0V,$				420		ns
Q _{rr}	Reverse F	Recovery Charge		dI _F /dt =100A/µs (No		(Note 4)		4.9		μC

Notes:


1. Repetitive Rating: Pulse width limited by maximum junction temperature

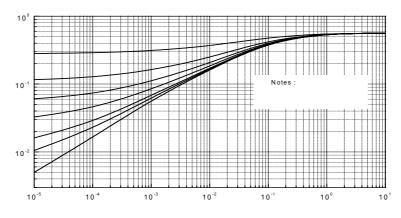
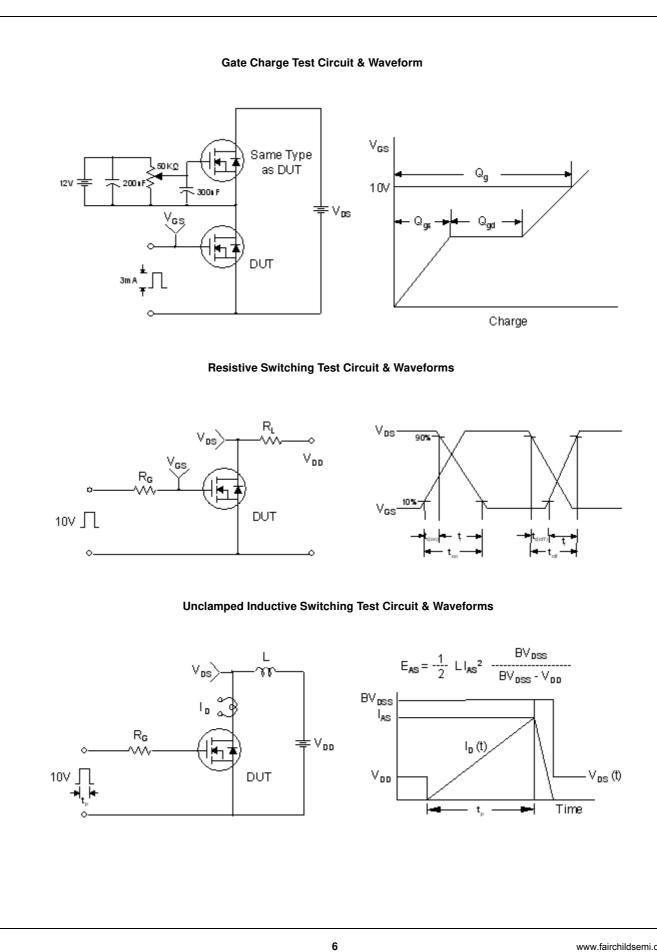
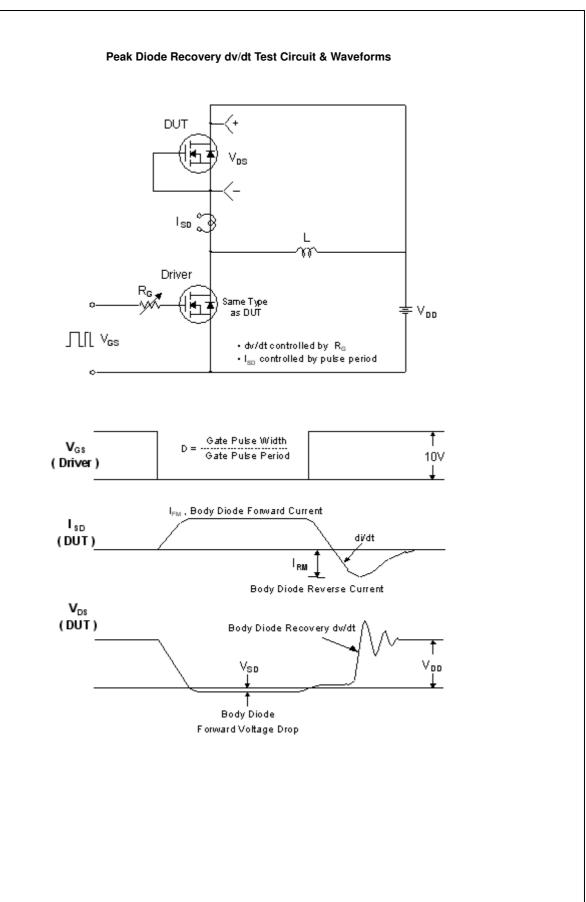
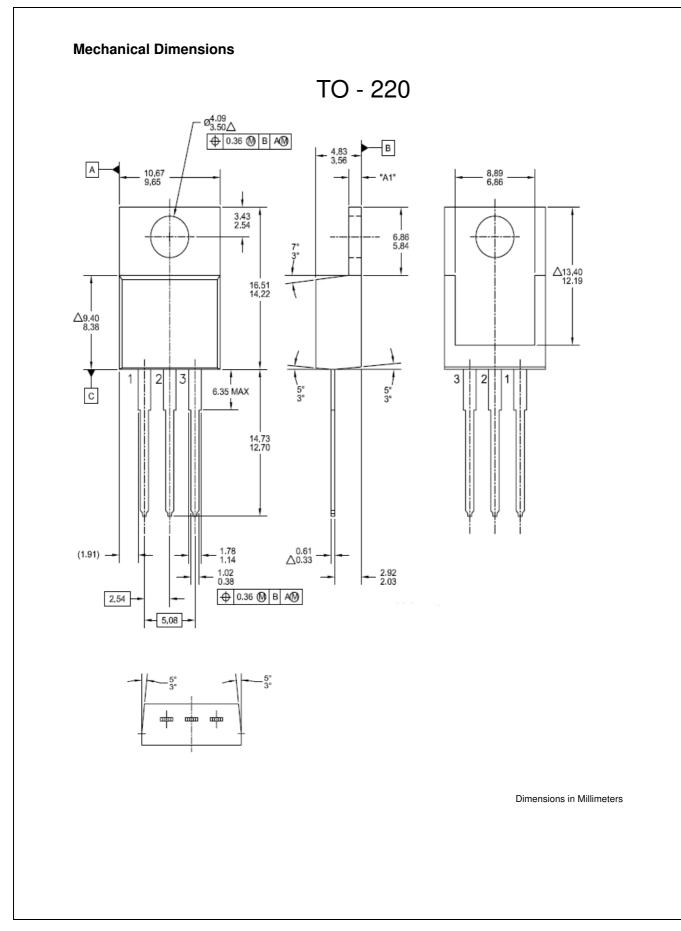

2. L = 11mH, I_{AS} = 12A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

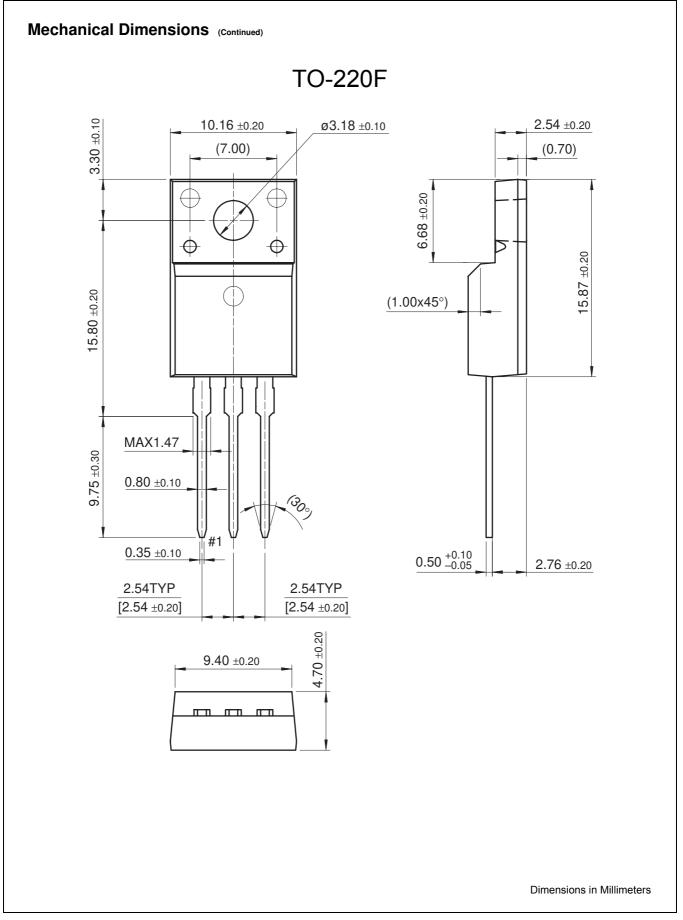
3. I_{SD} \leq 12A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C

4. Pulse Test: Pulse width $\leq 300 \mu s,$ Duty Cycle $\leq 2\%$

5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Performance Characteristics (Continued) Figure 11-1. Transient Thermal Response Curve for FQP12N60C


Figure 11-2. Transient Thermal Response Curve for FQPF12N60C

FQP12N60C / FQPF12N60C 600V N-Channel MOSFET

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FRFET [®] Global Power Resource SM	Green FPS [™] Green FPS [™] e-Series [™] GTO [™] <i>i-Lo</i> [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroFak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] U [®] PDP-SPM [™] Power220 [®]	Power247 [®] POWEREDGE [®] Power-SPM™ PowerTrench [®] Programmable Active Droop™ QFET [®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM [®] STEALTH™ SuperFET™ SuperFET™ SuperSOT™-3 SuperSOT™-6	SuperSOT™-8 SyncFET™ The Power Franchise [®] P franchise TinyBoost™ TinyBuck™ TinyDogic [®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC [®] UniFET™ VCX™
--	--	--	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.		

Rev. 131