MOSFET – Power, Single, N-Channel, DPAK/IPAK 30 V, 88 A

Features

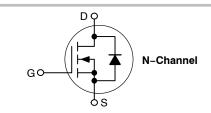
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

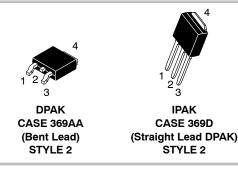
Applications

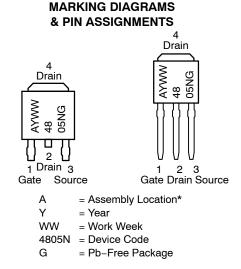
- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Parameter				
Drain-to-Source Voltag	V _{DSS}	30	V		
Gate-to-Source Voltag	e		V _{GS}	±20	V
Continuous Drain		T _A = 25°C	Ι _D	17.4	А
Current ($R_{\theta JA}$) (Note 1)		$T_A = 85^{\circ}C$		13.5	
Power Dissipation $(R_{\theta JA})$ (Note 1)		$T_A = 25^{\circ}C$	P _D	2.65	W
Continuous Drain		$T_A = 25^{\circ}C$	I _D	12.7	Α
Current ($R_{\theta JA}$) (Note 2)	Steady	$T_A = 85^{\circ}C$		9.8	
Power Dissipation $(R_{\theta JA})$ (Note 2)	State	$T_A = 25^{\circ}C$	P _D	1.41	W
Continuous Drain		$T_{C} = 25^{\circ}C$	Ι _D	95	Α
Current (R _{θJC}) (Note 1)		$T_C = 85^{\circ}C$		73	
Power Dissipation $(R_{\theta JC})$ (Note 1)		T _C = 25°C	P _D	79	W
Pulsed Drain Current	t _p =10μs	$T_A = 25^{\circ}C$	I _{DM}	175	Α
Current Limited by Pack	age	$T_A = 25^{\circ}C$	I _{DmaxPkg}	45	Α
Operating Junction and	Storage Te	emperature	T _J , T _{stg}	–55 to 175	°C
Source Current (Body D	iode)		۱ _S	55	Α
Source Current (Body D	iode) Pulse	ed t _p =20 μs	I _{SM}	175	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to-Source Avalanche Energy (V _{DD} = 24 V, V _{GS} = 10 V, L = 1.0 mH, I _{L(pk)} = 24 A, R _G = 25 Ω)			E _{AS}	288	mJ
Lead Temperature for So (1/8" from case for 10 s)	Idering Pu	rposes	ΤL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	5.0 m Ω @ 10 V	88 A
50 V	7.4 mΩ @ 4.5 V	00 A

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	1.9	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	56.6	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	106.6	

Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					-		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				27		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μA
		V _{DS} = 24 V	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	′ _{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS},$	I _D = 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				5.86		mV/°C
Durin to Course On Desistance	D	V/ 104a			4.0	5.0	0

Negative Threshold Temperature Coefficient	$V_{GS(TH)}/T_J$			5.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10$ to	I _D = 30 A	4.3	5.0	mΩ
		11.5 V	I _D = 15 A	4.2		
		V _{GS} = 4.5 V	I _D = 30 A	6.0	7.4	
			l _D = 15 A	5.8		
Forward Transconductance	9fs	V _{DS} = 15 V,	I _D = 15 A	17		S

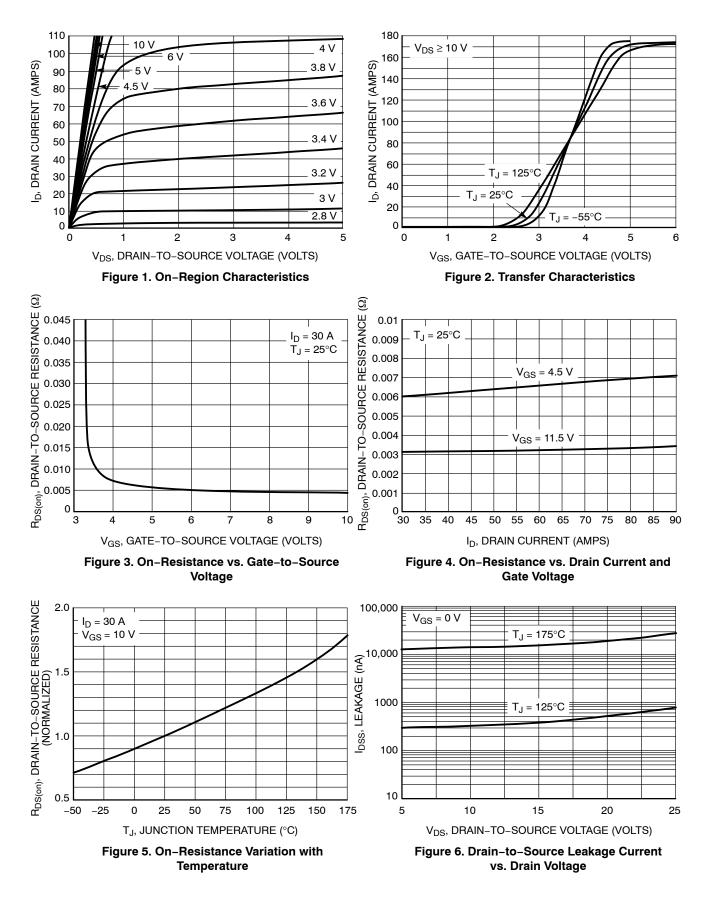
CHARGES AND CAPACITANCES

Input Capacitance	C _{iss}		2865		pF
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 12 V	610		
Reverse Transfer Capacitance	C _{rss}		338		
Total Gate Charge	Q _{G(TOT)}		20.5	26	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V,	4.05		
Gate-to-Source Charge	Q _{GS}	I _D = 30 A	8.28		
Gate-to-Drain Charge	Q _{GD}		8.36		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 11.5 V, V_{DS} = 15 V, I _D = 30 A	48		nC

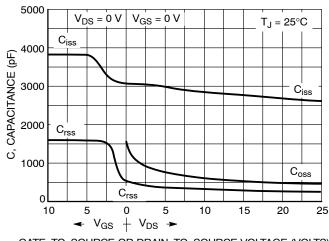
SWITCHING CHARACTERISTICS (Note 4)

Turn-On Delay Time	t _{d(on)}		17.2	ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$	20.3	
Turn-Off Delay Time	t _{d(off)}	I_D = 15 A, R_G = 3.0 Ω	20.8	
Fall Time	t _f		8.0	
Turn-On Delay Time	t _{d(on)}		10.8	ns
Rise Time	t _r	V _{GS} = 11.5 V, V _{DS} = 15 V,	20.5	
Turn-Off Delay Time	t _{d(off)}	I_D = 15 A, R_G = 3.0 Ω	30.8	
Fall Time	t _f		4.4	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)


Symbol	Test Condition		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS							
V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.87	1.2	V	
	I _S = 30 A	T _J = 125°C		0.76			
t _{RR}				25.7		ns	
ta	V _{GS} = 0 V, dls/	dt = 100 A/μs,		13.1			
tb	I _S = 3	$I_{\rm S} = 30 {\rm A}$		12.6			
Q _{RR}				18		nC	
	TICS V _{SD} t _{RR} ta tb	V _{SD} V _{GS} = 0 V, I _S = 30 A t_{RR} $v_{GS} = 0 V, dIs/I_S = 0 V, dIs/I_S$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Source Inductance	L _S		2.49	nH
Drain Inductance, DPAK	L _D		0.0164	
Drain Inductance, IPAK	L _D	T _A = 25°C	1.88	
Gate Inductance	L _G		3.46	
Gate Resistance	R _G		0.8	Ω


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

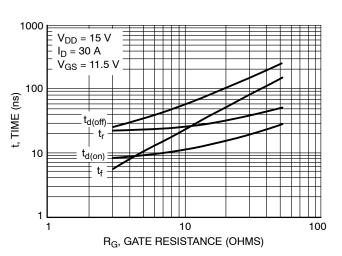


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

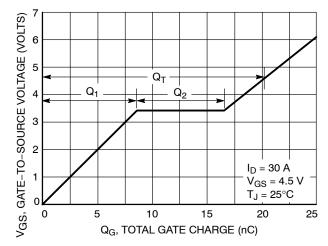


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

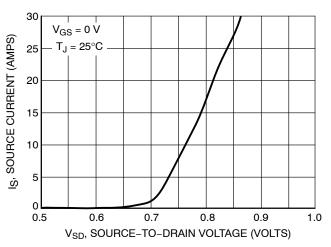
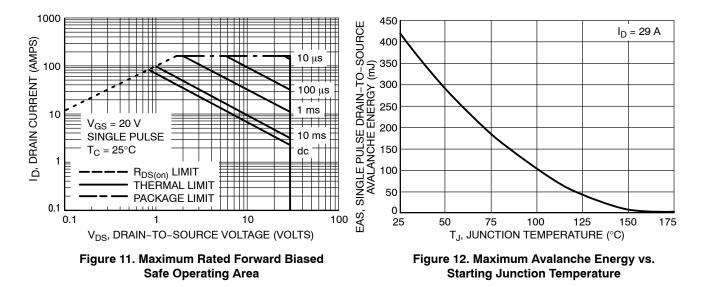



Figure 10. Diode Forward Voltage vs. Current

TYPICAL PERFORMANCE CURVES

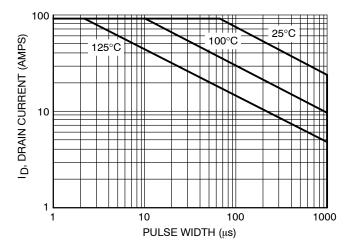
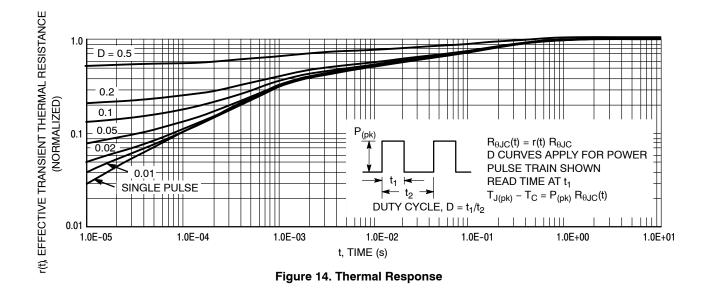
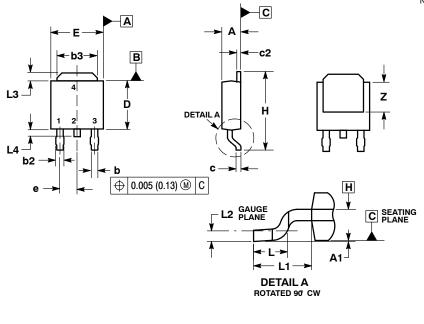



Figure 13. Avalanche Characteristics

ORDERING INFORMATION

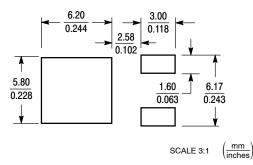

Order Number	Package	Shipping [†]
NTD4805NT4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NTD4805N-1G	IPAK (Pb-Free)	75 Units / Rail
NVD4805NT4G*	DPAK (Pb-Free)	2,500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NVD Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

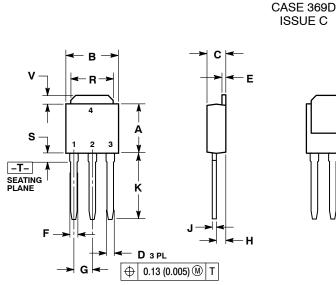
DPAK (SINGLE GUAGE) CASE 369AA **ISSUE B**

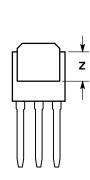

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS D3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- PLANE H.

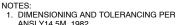
	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
c	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
Г	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Ζ	0.155		3.93	

SOLDERING FOOTPRINT*

PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


STYLE 2:




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK

ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

2.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
н	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and the 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC measonable attorney fees arisi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative