Power MOSFET and Schottky Diode

-20 V, -4.0 Å, Single P-Channel & Schottky Barrier Diode, ESD

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest R_{DS(on)} Solution in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- ESD Protected
- High Current Schottky Diode: 2 A Current Rating
- This is a Pb–Free Device

Applications

- Optimized for Battery and Load Management Applications in Portable Equipment
- Li–Ion Battery Charging and Protection Circuits
- DC-DC Buck Circuit
- **MAXIMUM RATINGS** (T_J = 25° C unless otherwise noted)

Paran	neter		Symbol	Value	Unit		
Drain-to-Source Volta	ge		V _{DSS}	-20	V		
Gate-to-Source Voltag	je		V _{GS}	±8.0	V		
Continuous Drain	Steady	T _A = 25°C	I _D	-3.2	А		
Current (Note 1)	State	T _A = 85°C		-2.3			
	t ≤ 5 s	$T_A = 25^{\circ}C$		-4.0			
Power Dissipation	Steady		PD	1.5	W		
(Note 1)	State	T _A = 25°C					
	t≤5 s			2.3			
Continuous Drain		T _A = 25°C	I _D	-2.2	А		
Current (Note 2)	Steady	T _A = 85°C		-1.6			
Power Dissipation (Note 2)	State	$T_A = 25^{\circ}C$	PD	0.71	W		
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-16	А		
Operating Junction and	Operating Junction and Storage Temperature			–55 to 150	°C		
Source Current (Body Diode) (Note 2)			۱ _S	-1.0	А		
Lead Temperature for S (1/8" from case for 10 s		urposes	ΤL	260	°C		

SCHOTTKY MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise stated)

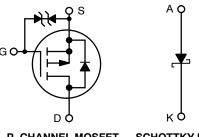
()			'
Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	١ _F	2.0	Α

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

 Surface Mounted on FR4 Board using the minimum recommended pad size, (30 mm², 2 oz Cu).

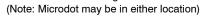
ON Semiconductor®

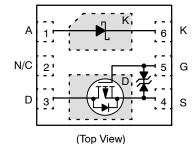

www.onsemi.com

P-CHANNEL MOSFET

V _{(BR)DSS}	V _{(BR)DSS} R _{DS(on)} Max	
	100 mΩ @ −4.5 V	
–20 V	144 mΩ @ −2.5 V	-4.0 A
	200 mΩ @ −1.8 V	


SCHOTTKY DIODE


V _R Max	V _F Max	I _F Max
20 V	0.47 V	2.0 A


P-CHANNEL MOSFET SCHOTTKY DIODE

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{\theta JA}$	177	°C/W
Junction-to-Ambient $-t \le 5$ s (Note 3)	$R_{\theta JA}$	54	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

MOSFET ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -25	50 μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -250 \ \mu A$, Ref to $25^{\circ}C$			13		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}		T _J = 25°C			-1.0	μA
		$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	T _J = 85°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = ±	8.0 V			±10	μA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -250 \ \mu A$		-0.4		-1.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.0		mV/°C

Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J		2.0		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = -4.5$ V, $I_D = -2.0$ A	68	100	mΩ
		V_{GS} = -2.5 V, I _D = -2.0 A	90	144	
		V_{GS} = -1.8 V, I _D = -1.7 A	125	200	
Forward Transconductance	9 _{FS}	V _{DS} = -16 V, I _D = -2.0 A	6.5		S

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C _{ISS}		450		pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 V, f = 1.0 MHz,$ $V_{DS} = -10 V$	90		
Reverse Transfer Capacitance	C _{RSS}		62		
Total Gate Charge	Q _{G(TOT)}		5.2	7.8	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -2.0 \text{ A}$	0.3		
Gate-to-Source Charge	Q _{GS}	I _D = -2.0 A	0.84		
Gate-to-Drain Charge	Q _{GD}		1.5		

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		6.6	ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -5.0 V,	9.0	
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D}$ = -2.0 A, R _G = 2.0 Ω	14	
Fall Time	t _f		12.5	

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Recovery Voltage	V _{SD}	V _{GS} = 0 V, I _S = –1.0 A	T _J = 25°C		-0.73	-1.0	V
		VGS = 0 V, IS = -1.0 A	T _J = 125°C		-0.62		v
Reverse Recovery Time	t _{RR}	-			23		
Charge Time	ta	$V_{GS} = 0 V, d_{ISD}/d_t = 1$	$V_{GS} = 0 V$, $d_{ISD}/d_t = 100 A/\mu s$,		13		ns
Discharge Time	t _b	$\label{eq:VGS} \begin{array}{l} V_{GS} = 0 \ V, \ d_{ISD}/d_t = 100 \ \text{A}/\mu\text{s}, \\ I_S = -1.0 \ \text{A} \end{array}$			10		
Reverse Recovery Time	Q _{RR}	1			10		nC

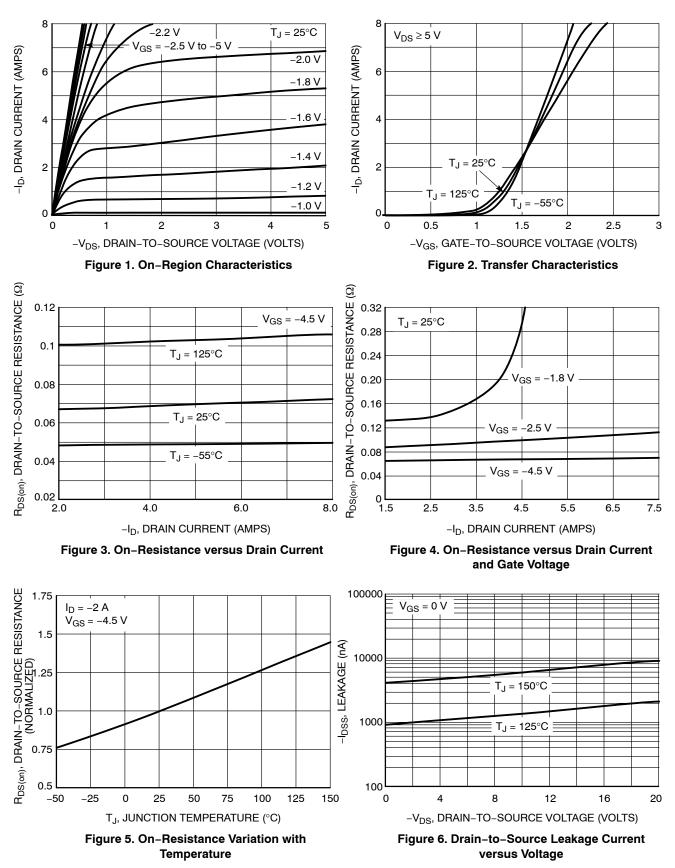
5. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	V _F	I _F = 100 mA		0.34	0.39	V
Forward Voltage		I _F = 1.0 A		0.47	0.53	
Maximum Instantaneous Reverse Current	I _R	V _R = 30 V		17	20	μA
		V _R = 20 V		3.0	8.0	
		V _R = 10 V		2.0	4.5	
Capacitance	С	V _R = 5.0 V, f = 1.0 MHz		38		pF

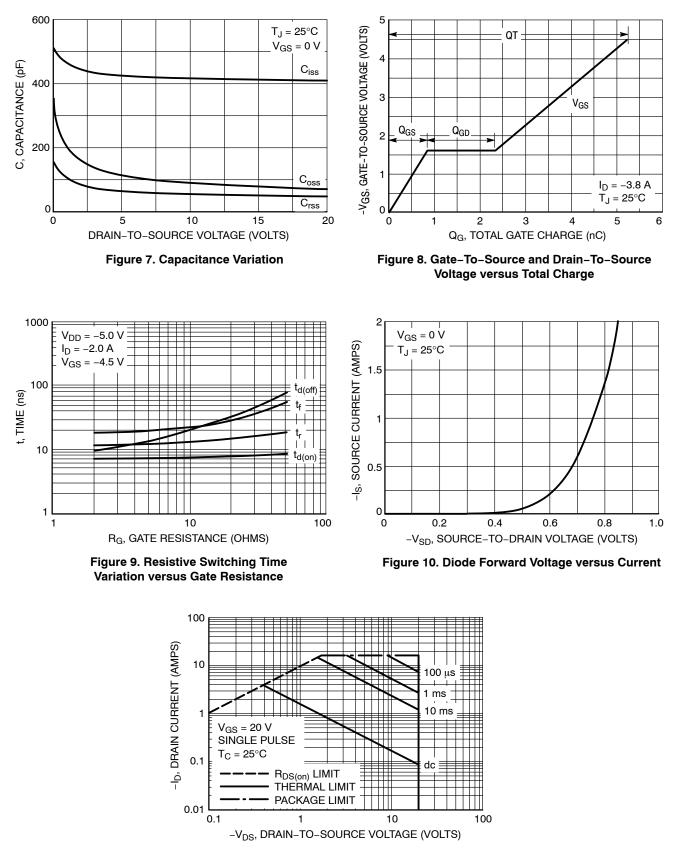
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 85°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Maximum Instantaneous	V _F	I _F = 100 mA		0.22	0.35	V
Forward Voltage		I _F = 1.0 A		0.40	0.50	
Maximum Instantaneous	I _R	V _R = 30 V		0.22	2.5	mA
Reverse Current		V _R = 20 V		0.11	1.6	
		V _R = 10 V		0.06	1.2	

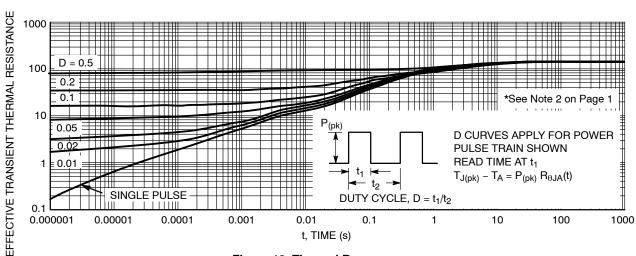

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125 $^\circ\text{C}$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage	V _F	I _F = 100 mA		0.20	0.29	V
		I _F = 1.0 A		0.40	0.47	
Maximum Instantaneous Reverse Current	Ι _R	V _R = 30 V		2.0	20	mA
		V _R = 20 V		1.1	10.9	
		V _R = 10 V		0.63	8.4	

ORDERING INFORMATION

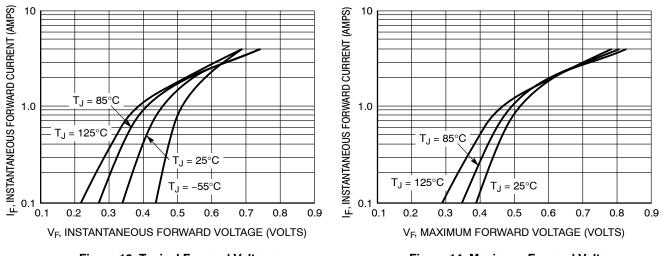

Device Order Number	Package Type	Tape & Reel Size†
NTLJD3182FZTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel
NTLJD3182FZTBG	WDFN6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.



TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

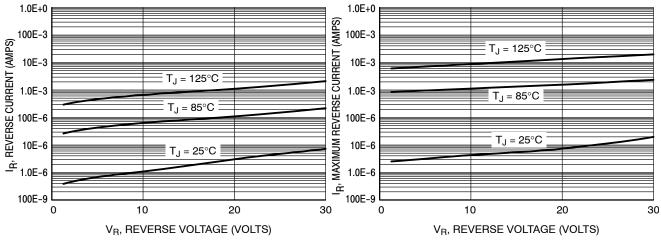
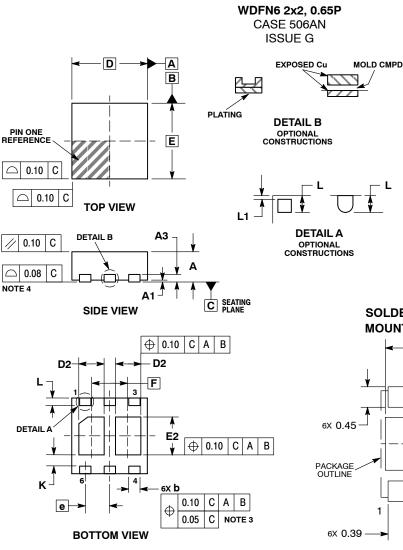
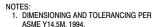
TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

Figure 12. Thermal Response

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

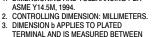
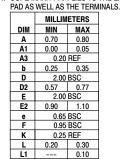
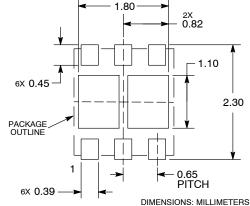

Figure 15. Typical Reverse Current

Figure 16. Maximum Reverse Current


PACKAGE DIMENSIONS



0.15 AND 0.30 mm FROM THE TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED

SOLDERMASK DEFINED MOUNTING FOOTPRINT*

4

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient patient of the patient patient of the patient patient of the patient patient patient patient patient of the patient patien

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative