MOSFET – Power, Single, N-Channel 100 V, 8 mΩ, 104 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
100 V	8 mΩ @ 10 V	104 A

D (5) Ç

ሐ S (1,2,3)

S

S

S

G

= Assembly Location

MARKING DIAGRAM

6B05N

AYWZZ

D

D

D

N-CHANNEL MOSFET

G (4)

DFN5

(SO-8FL)

CASE 488AA

STYLE 1

A Y

W

ΖZ

Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	100	V	
Gate-to-Source Voltage		V _{GS}	±20	V	
Continuous Drain		$T_{C} = 25^{\circ}C$	۱ _D	104	А
Current R _{θJC} (Notes 1, 2, 3)	Steady State	T _C = 100°C		66	
Power Dissipation $R_{\theta JC}$ (Notes 1, 2)		$T_{C} = 25^{\circ}C$	PD	138	W
		$T_{C} = 100^{\circ}C$		56	
Continuous Drain	Steady State	T _A = 25°C	I _D	16	А
Current R _{θJA} (Notes 1, 2, 3)		$T_A = 100^{\circ}C$		10	
Power Dissipation $R_{\theta JA}$ (Notes 1 & 2)		T _A = 25°C	PD	3.3	W
		T _A = 100°C		1.3	
Pulsed Drain Current	T _A = 25	°C, t _p = 10 μs	I _{DM}	370	А
Operating Junction and Storage Temperature		T _J , T _{stg}	–55 to + 150	°C	
Source Current (Body Diode)			I _S	130	А
Single Pulse Drain-to-Source Avalanche Energy ($I_{L(pk)} = 50 A$)		E _{AS}	125	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

ORDERING INFORMATION

= Work Week

= Lot Traceability

= Year

See detailed ordering, marking and shipping information on page 5 of this data sheet.

 Junction-to-Ambient - Steady State (Note 2)
 R_{0JA}
 39

 1. The entire application environment impacts the thermal resistance values shown,

Symbol

 $\mathsf{R}_{\theta\mathsf{JC}}$

Value

0.9

Unit

°C/W

device. If any of these limits are exceeded, device functionality should not be

they are not constants and are only valid for the particular conditions noted. 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

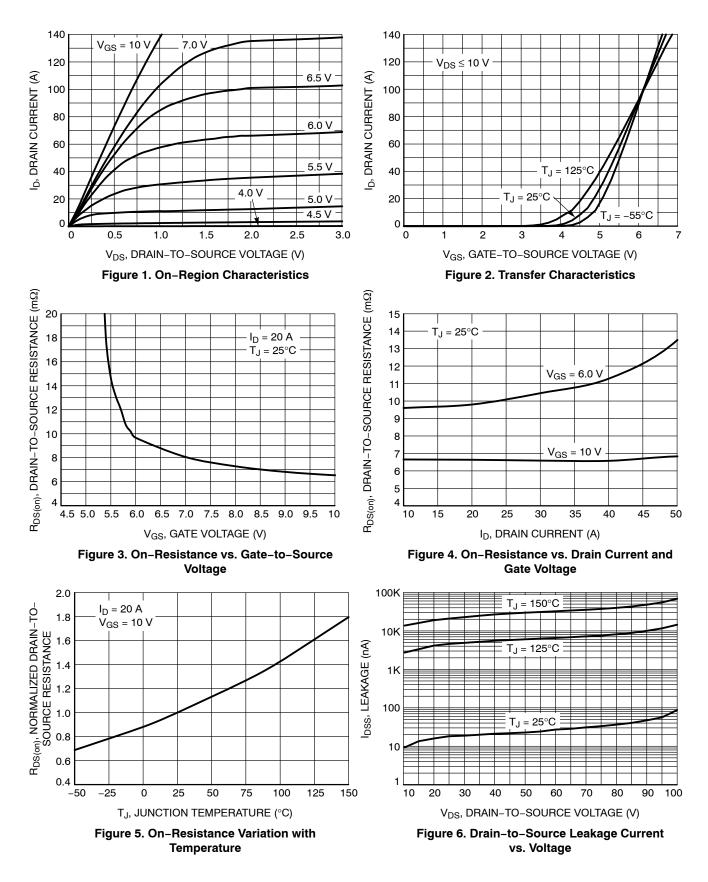
assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

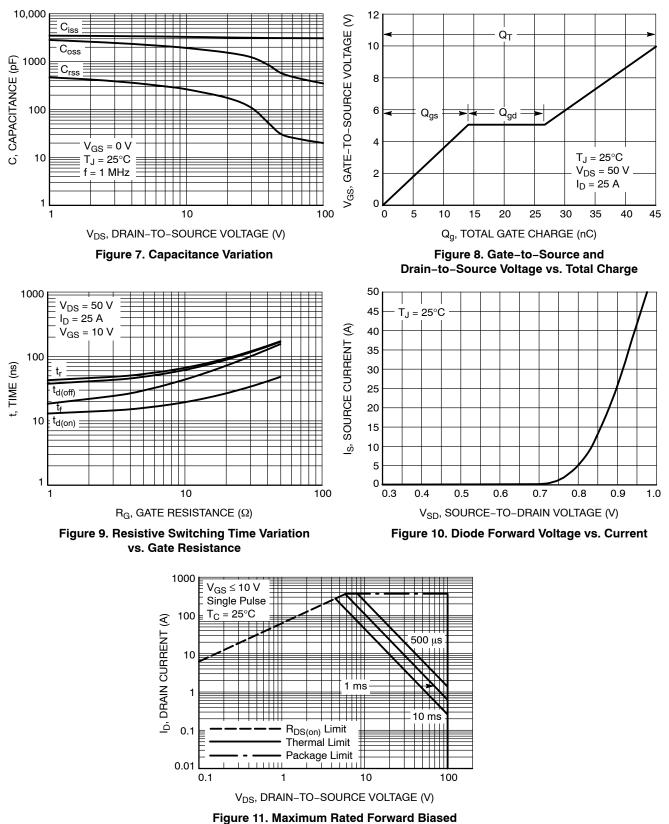
Parameter

Junction-to-Case - Steady State

 Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

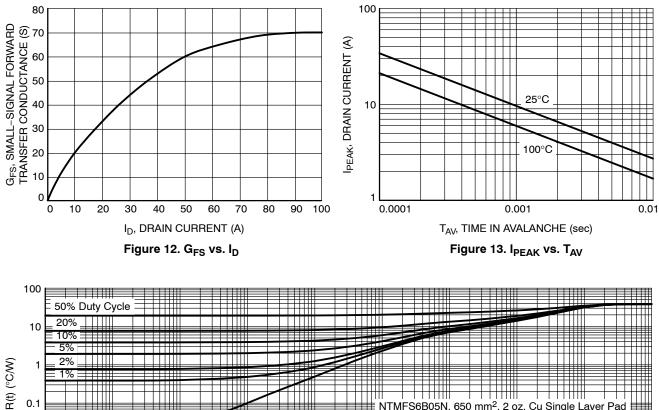

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 µA		100			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				73		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 80 V	T _J = 25 °C			10	
			T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$				100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		2.0		4.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-7.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		6.5	8.0	
		V _{GS} = 6.0 V	I _D = 10 A		9.6	14	mΩ
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 50 V			3100		pF
Output Capacitance	C _{OSS}				570		
Reverse Transfer Capacitance	C _{RSS}				28		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 50 V; I_D = 25 A T_J = 25 °C			44		nC
Threshold Gate Charge	Q _{G(TH)}				5.0		
Gate-to-Source Charge	Q _{GS}				14		
Gate-to-Drain Charge	Q _{GD}				12		
Plateau Voltage	V _{GP}				5.0		V
Gate Resistance	R _G				1.0		Ω
SWITCHING CHARACTERISTICS (Note &	5)						
Turn-On Delay Time	t _{d(ON)}				14		
Rise Time	tr	V _{GS} = 10 V, V _{DS} = 50 V, I _D = 25 A, R _G = 1.0 Ω			43		- ns
Turn-Off Delay Time	t _{d(OFF)}				39		
Fall Time	t _f				16		
DRAIN-SOURCE DIODE CHARACTERIS	TICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 25 A	$T_J = 25^{\circ}C$		0.9	1.2	
			T _J = 125°C		0.8		- V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _S /d _t = 100 A/μs, I _S = 25 A			58		
Charge Time	t _a				30		ns
Discharge Time	t _b				28		
Reverse Recovery Charge	Q _{RR}				83		nC


Produ parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures.

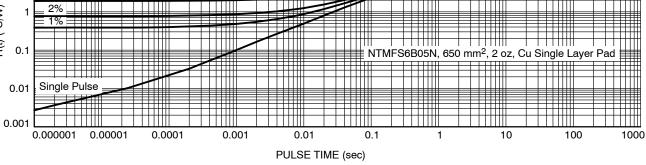
TYPICAL CHARACTERISTICS

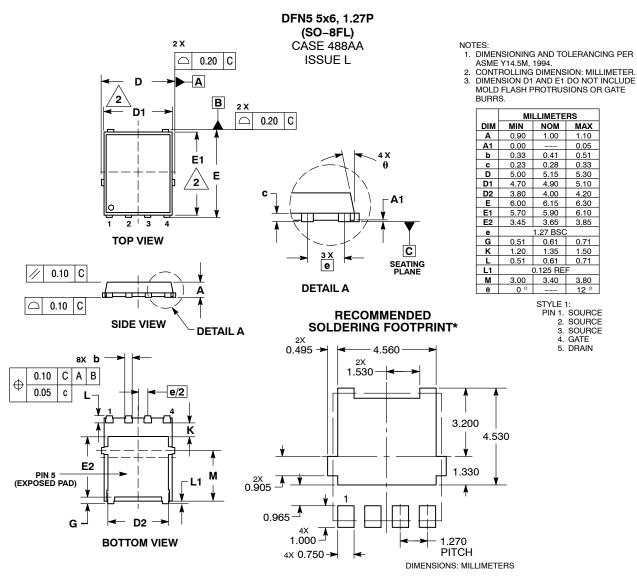


TYPICAL CHARACTERISTICS

Safe Operating Area

TYPICAL CHARACTERISTICS




Figure 14. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NTMFS6B05NT1G	6B05N	DFN5 (Pb–Free)	1500 / Tape & Reel
NTMFS6B05NT3G	6B05N	DFN5 (Pb–Free)	5000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient of the patien

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative