MOSFET – Power, Single, N-Channel, μ8FL 30 V, 52 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

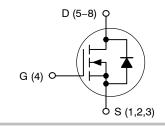
Applications

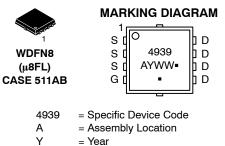
- Low-Side DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Param	eter		Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	30	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	14.3	А
Current $R_{\theta JA}$ (Note 1)		T _A = 85°C	1	10.3	1
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	P _D	2.21	W
Continuous Drain		$T_A = 25^{\circ}C$	I _D	20.3	А
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 85°C	1	14.7	
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$	Steady	$T_A = 25^{\circ}C$	P _D	4.48	W
Continuous Drain	State	$T_A = 25^{\circ}C$	I _D	8.9	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C	1	6.4	1
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.85	W
Continuous Drain		T _C = 25°C	I _D	52	А
Current $R_{\theta JC}$ (Note 1)		$T_C = 85^{\circ}C$		38	
Power Dissipation $R_{\theta JC}$ (Note 1)		$T_C = 25^{\circ}C$	P _D	29.8	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	170	А
Operating Junction and S	itorage Ten	nperature	Т _Ј , T _{stg}	–55 to +150	°C
Source Current (Body Die	ode)		ا _S	35	А
Drain to Source dV/dt	Drain to Source dV/dt				
Single Pulse Drain-to-So $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, \text{V} $ $I_L = 31 \text{ A}_{pk}, L = 0.1 \text{ mH}, F$	E _{AS}	48	mJ		
Lead Temperature for So (1/8" from case for 10 s)	dering Pur	poses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	5.5 m Ω @ 10 V	52 A
30 V	8.0 mΩ @ 4.5 V	52 A

N-Channel MOSFET

(Note: Microdot may be in either location)

= Work Week = Pb-Free Package

WW

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4939NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4939NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	4.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	R_{\thetaJA}	56.5	
Junction-to-Ambient – Steady State (Note 4)	$R_{\theta JA}$	146.5	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	R _{θJA}	28	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$V_{CS} = 0 V_{.}$ $T_{J} = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 24 V$	$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±20 V			±100	nA

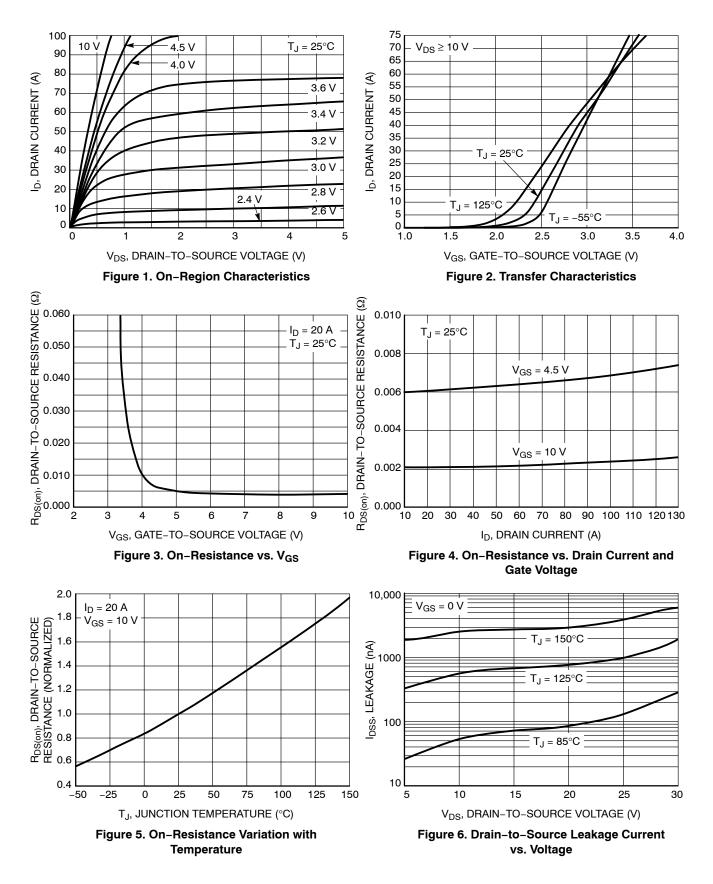
ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.2		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	<u>)</u> / 10)/	l _D = 20 A		4.1	5.5	mΩ
		V _{GS} = 10 V	I _D = 10 A		4.1		
			I _D = 20 A		6.0	8.0	
		V _{GS} = 4.5 V	I _D = 10 A		5.9		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D =	= 15 A		35		S

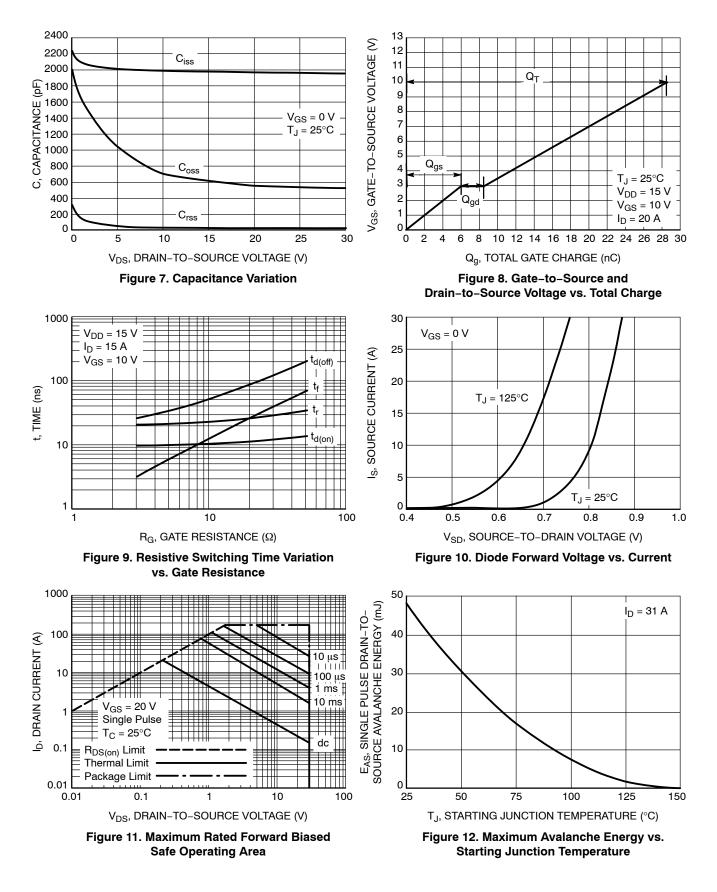
CHARGES AND CAPACITANCES

C _{iss}			1979		pF
C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V		711		
C _{rss}	1		20.2		
Q _{G(TOT)}			12.4		nC
Q _{G(TH)}			3.2		
Q _{GS}	$v_{GS} = 4.5 \text{ V}, v_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$		6.0		
Q _{GD}	1		1.8		
Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A		28		nC
	Coss Crss QG(TOT) QG(TH) QGS QGD	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $V, $f = 1.0 $MHz, $V_{DS} = 15 V \\ \hline C_{rss} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $$	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $ V, $f = 1.0 $ MHz, $V_{DS} = 15 $ V$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 \\ \hline C_{rss} & 20.2 \\ \hline $Q_{G(TOT)}$ & 12.4 \\ \hline $Q_{G(TH)}$ & V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 20 A & 3.2 \\ \hline Q_{GD} & 1.8 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 & 20.2 &$

SWITCHING CHARACTERISTICS (Note 6)


Turn-On Delay Time	t _{d(on)}		12.2	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	20.6	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 15 {\rm A}, {\rm R}_{\rm G} = 3.0 {\Omega}$	20.8	
Fall Time	t _f		3.9	

5. Pulse Test: pulse width = 300 μ s, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Cond	dition	Min	Тур	Max	Uni
SWITCHING CHARACTERISTIC	S (Note 6)				•		•
Turn-On Delay Time	t _{d(on)}				8.7		ns
Rise Time	t _r	V _{GS} = 10 V, V _C	_{0S} = 15 V,		19.5		
Turn-Off Delay Time	t _{d(off)}	V _{GS} = 10 V, V _E I _D = 15 A, R _G	= 3.0 Ω		25.3		
Fall Time	t _f				3.2		
DRAIN-SOURCE DIODE CHARA	CTERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.84	1.2	V
			T _J = 125°C		0.71		1
Reverse Recovery Time	t _{RR}				35.5		ns
Charge Time	t _a	$V_{GS} = 0 V, d_{IS}/d_{t}$	= 100 A/μs,		19		1
Discharge Time	t _b	V_{GS} = 0 V, d _{IS} /d _t = 100 A/µs, I _S = 20 A			16.5		1
Reverse Recovery Charge	Q _{RR}				28		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.38		nH
Drain Inductance	L _D				0.054		
Gate Inductance	L _G	T _A = 25°C			1.3		1
Gate Resistance	R _G				1.1	2.0	Ω

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

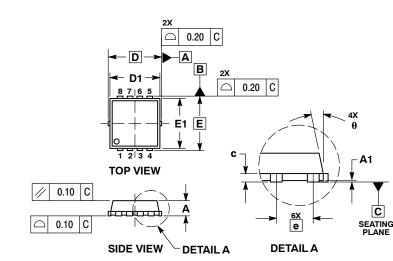

TYPICAL CHARACTERISTICS

Figure 13. Thermal Response

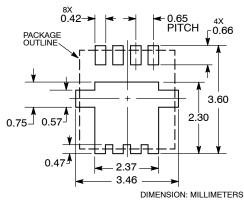
PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB **ISSUE C**

8x b 0.10 С А В 0.05 С e/2 4X I Ē2 ▼ E3_ М 11 D2 G **BOTTOM VIEW**

 \oplus

NOTES


DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.

2

DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS. З.

	м	LLIMETE	RS	INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.70	0.75	0.80	0.028	0.030	0.031		
A1	0.00		0.05	0.000		0.002		
b	0.23	0.30	0.40	0.009	0.012	0.016		
С	0.15	0.20	0.25	0.006	0.008	0.010		
D		3.30 BSC		0	.130 BSC)		
D1	2.95	3.05	3.15	0.116	0.120	0.124		
D2	1.98	2.11	2.24	0.078	0.083	0.088		
E		3.30 BSC		0	.130 BSC)		
E1	2.95	3.05	3.15	0.116	0.120	0.124		
E2	1.47	1.60	1.73	0.058	0.063	0.068		
E3	0.23	0.30	0.40	0.009	0.012	0.016		
е		0.65 BSC	;	(0.026 BS0	2		
G	0.30	0.41	0.51	0.012	0.016	0.020		
к	0.65	0.80	0.95	0.026	0.032	0.037		
L	0.30	0.43	0.56	0.012	0.017	0.022		
L1	0.06	0.13	0.20	0.002	0.005	0.008		
Μ	1.40	1.50	1.60	0.055	0.059	0.063		
θ	0 °		12 °	0 °		12 °		

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC obsence under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative