

September 2000

ТМ

FQB3N80 / FQI3N80 800V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

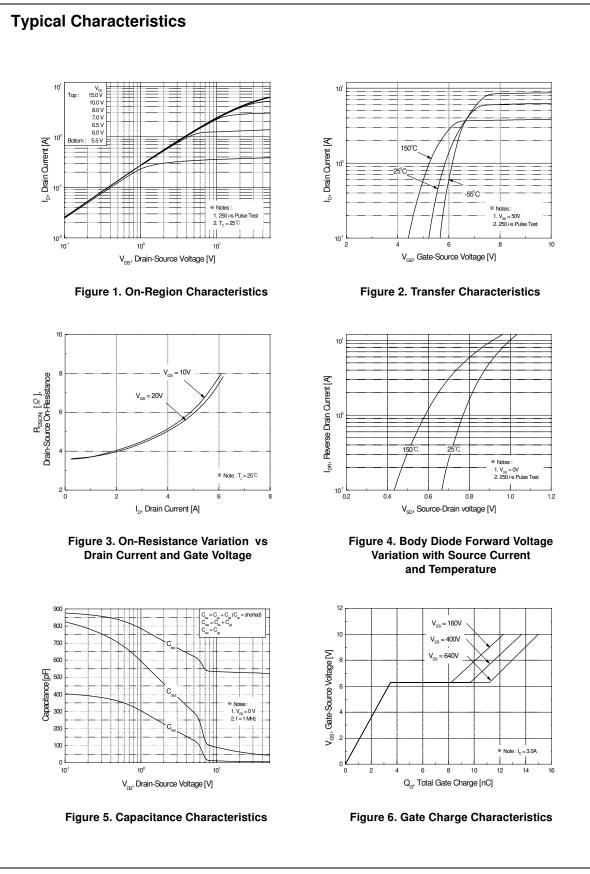
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

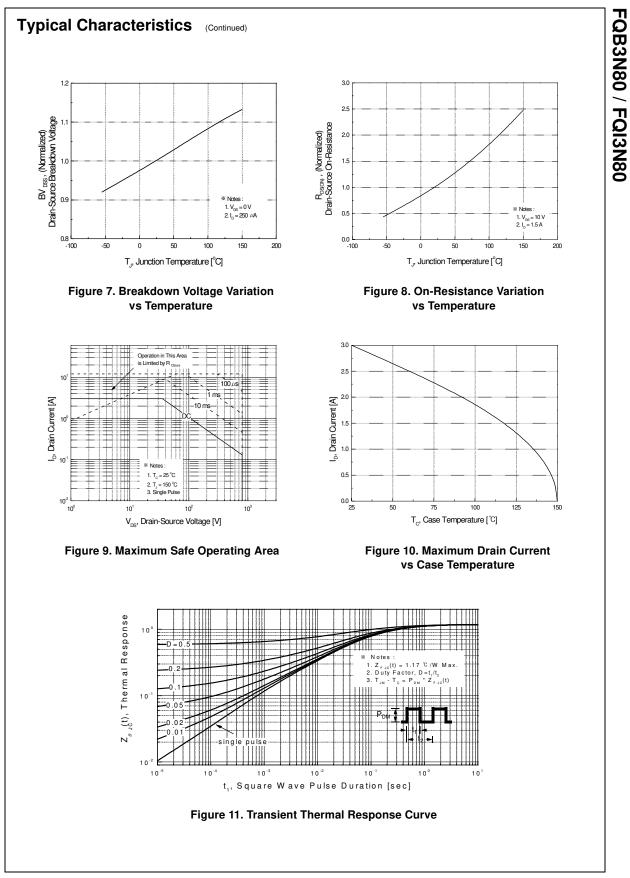
Features

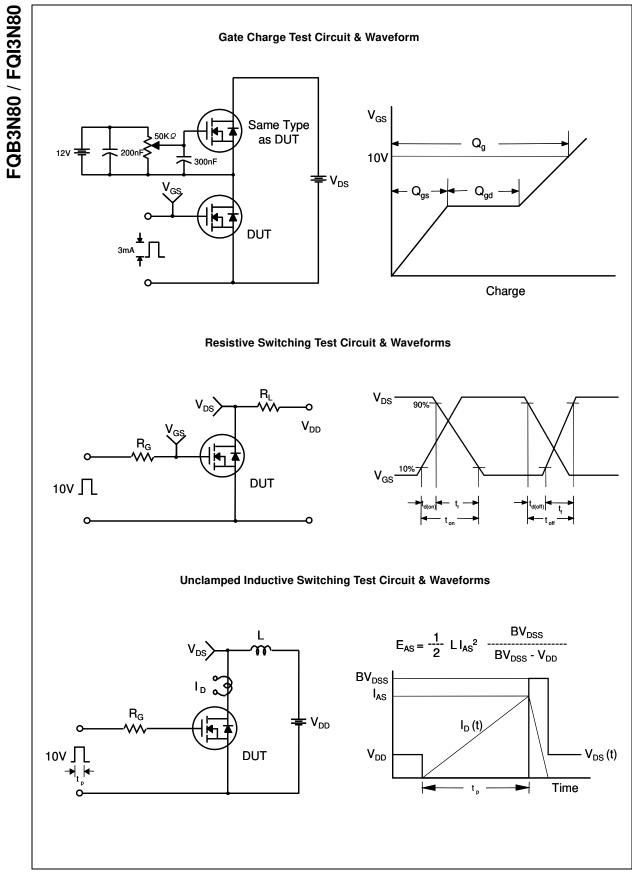
- 3.0A, 800V, R_{DS(on)} = 5.0Ω @V_{GS} = 10 V
 Low gate charge (typical 15 nC)
 Low Crss (typical 7.0 pF)

- Fast switching
- · 100% avalanche tested
- Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

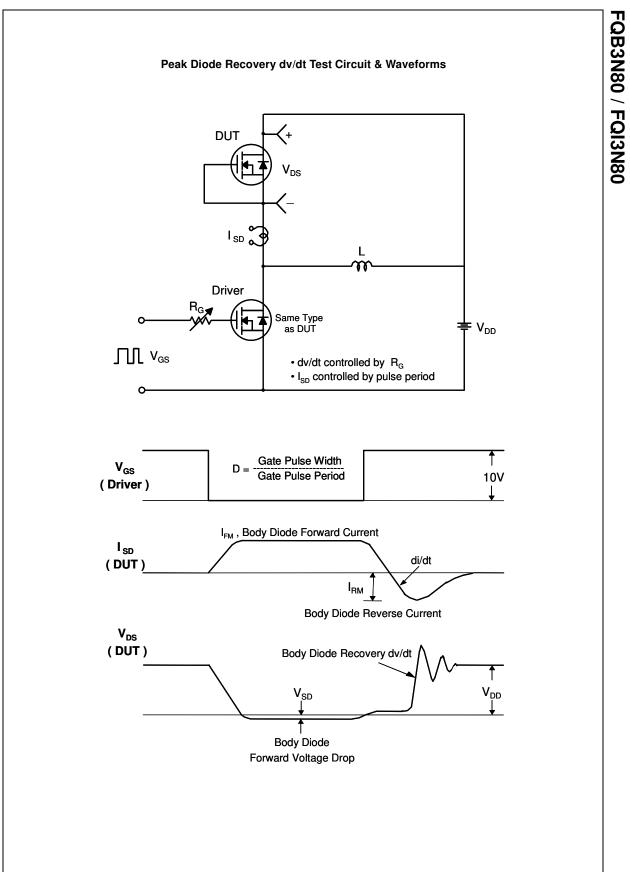

Symbol	Parameter		FQB3N80 / FQI3N80	Units
V _{DSS}	Drain-Source Voltage		800	V
I _D	Drain Current - Continuous (T _C = 25°	°C)	3.0	Α
	- Continuous (T _C = 100	D°C)	1.9	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	12	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	320	mJ
I _{AR}	Avalanche Current	(Note 1)	3.0	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	10.7	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.0	V/ns
PD	Power Dissipation $(T_A = 25^{\circ}C)^{*}$		3.13	W
	Power Dissipation $(T_C = 25^{\circ}C)$		107	W
	- Derate above 25°C		0.85	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering 1/8" from case for 5 seconds	g purposes,	300	°C


Thermal Characteristics

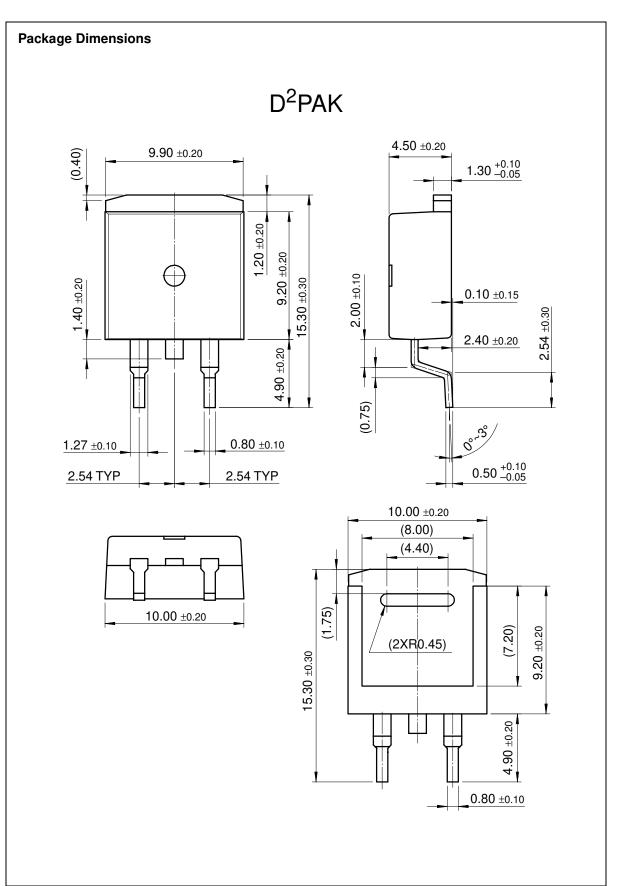

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		1.17	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Cha	aracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		800			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to 2	25°C		0.9		V/°C
IDSS	7 0 1 1/1 5 1 0 1	$V_{DS} = 800 \text{ V}, V_{GS} = 0 \text{ V}$				10	μA
	Zero Gate Voltage Drain Current	V _{DS} = 640 V, T _C = 125°C				100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				-100	nA
On Cha	raatariatiaa						
V _{GS(th)}	aracteristics Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 1.5 \text{ A}$			3.8	5.0	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 1.5 \text{ A}$ (N	lote 4)		2.85		S
C _{iss} C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1.0 MHz			57 7.0	75 9.0	pF pF
t _{d(on)}	Ing Characteristics				15	40	ns
t _r	Turn-On Rise Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 3.0 \text{ A},$			40	90	ns
t _{d(off)}	Turn-Off Delay Time	R _G = 25 Ω	-		30	70	ns
t _f	Turn-Off Fall Time	(Not	te 4, 5)		30	70	ns
Q _g	Total Gate Charge	V _{DS} = 640 V, I _D = 3.0 A,			15	19	nC
Q _{gs}	Gate-Source Charge	$V_{\rm DS} = 040$ V, $T_{\rm D} = 3.0$ A, $V_{\rm GS} = 10$ V	_		3.5		nC
Q _{gd}	Gate-Drain Charge		te 4, 5)		7.7		nC
	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·					
	Source Diode Characteristics a					3.0	A
l _S	Maximum Continuous Drain-Source Dide F	bus Drain-Source Diode Forward Current				12	A
I _{SM} V _{SD}	Drain-Source Diode Forward Voltage						V
∙so t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 3.0 A,$			530	1.4	ns
	Reverse Recovery Charge		lote 4)		2.8		μC
Q _{rr}					2.0		μΟ

FQB3N80 / FQI3N80



©2000 Fairchild Semiconductor International


Rev. A, September 2000



©2000 Fairchild Semiconductor International

Rev. A, September 2000

FQB3N80 / FQI3N80

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™]	FASTr [™]	QFET™	VCX™
Bottomless [™]	GlobalOptoisolator [™]	QS™	
CoolFET [™]	GTO [™]	QT Optoelectronics™	
CROSSVOLT [™]	HiSeC [™]	Quiet Series™	
DOME [™]	ISOPLANAR [™]	SuperSOT™-3	
E ² CMOS [™]	MICROWIRE [™]	SuperSOT™-6	
EnSigna [™]	OPTOLOGIC [™]	SuperSOT™-8	
FACT [™]	OPTOPLANAR [™]	SyncFET™	
0	OPTOPLANAR™ POP™ PowerTrench [®]	•	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor		SSEARCH Parametr	Tic Cross Reference 3C Eolders and Applica
find products Products groups Analog and Mixed Signal Discrete Interface Logic Microcontrollers Non-Volatile Memory Optoelectronics Markets and applications New products Product selection and parametric search Cross-reference search technical information buy products technical support my Fairchild	Home >> End products >> FQI3N80 800V N-Channel QFET Contents General description Features Product.status/pricing/packaging Models General description These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply. back to top	Image Product Datasheet Download this datasheet PDF e-mail this datasheet [E-] This page Print version	Folders and Annlica Related Links Request samples Datted line How to order products Datted line Product Change Notices (PCNs) Datted line Distributor and field sales representatives Datted line Quality and reliability Datted line Dotted line Distributor and field sales representatives Datted line Datted line Distributor and field sales representatives Datted line Datted line Distributor and reliability
company	Features		

- 3.0A, 800V, $R_{DS(on)} = 5.0\Omega @V_{GS} = 10$ V
- Low gate charge (typical 15 nC)
- Low Crss (typical 7.0 pF)
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQI3N80TU	Full Production	\$0.87	TO-262(I2PAK)	3	RAIL

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads	Condition	Temperature range	Software version	Revision date
PSPICE				
TO-262(I2PAK)-3	Electrical	-55°C to 155°C	9.2	Aug 21, 2001

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor