
# IRFR9010, IRFU9010, SiHFR9010, SiHFU9010

Vishay Siliconix

# Power MOSFET

| PRODUCT SUMMARY            |                               |  |  |
|----------------------------|-------------------------------|--|--|
| V <sub>DS</sub> (V)        | - 50                          |  |  |
| $R_{DS(on)}(\Omega)$       | V <sub>GS</sub> = - 10 V 0.50 |  |  |
| Q <sub>g</sub> (Max.) (nC) | 9.1                           |  |  |
| Q <sub>gs</sub> (nC)       | 3.0                           |  |  |
| Q <sub>gd</sub> (nC)       | 5.9                           |  |  |
| Configuration              | Single                        |  |  |



#### **FEATURES**

 Surface Mountable (Order IRFR9010. SiHFR9010)



**FREE** 

 Straight Lead Option (Order as IRFU9010, SiHFU9010)

COMPLIANT HALOGEN

Repetitive Avalanche Ratings

Dynamic dV/dt Rating

Simple Drive Requirements

Ease of Paralleling

 Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

#### DESCRIPTION

The power MOSFET technology is the key to Vishay's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dV/dt capability.

The power MOSFET transistors also feature all of the well established advantages of MOSFETs such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface mount packages enhance circuit performance by reducing stray inductances and capacitance. The DPAK (TO-252) surface mount package brings the advantages of power MOSFETs to high volume applications where PC Board surface mounting is desirable. The surface mount option IRFR9010, SiHFR9010 is provided on 16 mm tape. The straight lead option IRFU9010, SiHFU9010 of the device is called the IPAK (TO-251).

They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunication equipment, DC/DC converters, and a wide range of consumer products.

| ORDERING INFORMATION            |               |                  |                   |               |
|---------------------------------|---------------|------------------|-------------------|---------------|
| Package                         | DPAK (TO-252) | DPAK (TO-252)    | DPAK (TO-252)     | IPAK (TO-251) |
| Lead (Pb)-free and Halogen-free | SiHFR9010-GE3 | SiHFR9010TR-GE3a | SiHFR9010TRL-GE3a | SiHFU9010-GE3 |
| Lood (Db) from                  | IRFR9010PbF   | IRFR9010TRPbFa   | IRFR9010TRLPbFa   | IRFU9010PbF   |
| Lead (Pb)-free                  | SiHFR9010-E3  | SiHFR9010T-E3a   | SiHFR9010TL-E3a   | SiHFU9010-E3  |

#### Note

See device orientation.

| <b>ABSOLUTE MAXIMUM RATINGS</b> (T <sub>C</sub> = 25 °C, unless otherwise noted)                                 |                                                   |                                   |               |      |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|---------------|------|
| PARAMETER                                                                                                        | SYMBOL                                            | LIMIT                             | UNIT          |      |
| Drain-Source Voltage                                                                                             |                                                   | $V_{DS}$                          | - 50          | V    |
| Gate-Source Voltage                                                                                              |                                                   | $V_{GS}$                          | ± 20          | 7 v  |
| Continuous Drain Current $V_{GS} \text{ at - 10 V} \frac{T_C = 25 ^{\circ}\text{C}}{T_C = 100 ^{\circ}\text{C}}$ |                                                   | 1                                 | - 5.3         |      |
| Continuous Drain Current                                                                                         | $V_{GS}$ at - 10 $V_{CS}$ $T_{C} = 100 ^{\circ}C$ | l <sub>D</sub>                    | - 3.3         | Α    |
| Pulsed Drain Current <sup>a</sup>                                                                                | I <sub>DM</sub>                                   | - 21                              |               |      |
| Linear Derating Factor                                                                                           |                                                   |                                   | 0.20          | W/°C |
| Single Pulse Avalanche Energy <sup>b</sup>                                                                       |                                                   | E <sub>AS</sub>                   | 136           | mJ   |
| Repetitive Avalanche Current <sup>a</sup>                                                                        |                                                   | I <sub>AR</sub>                   | - 5.3         | А    |
| Repetitive Avalanche Energy <sup>a</sup>                                                                         |                                                   | E <sub>AR</sub>                   | 2.5           | mJ   |
| Maximum Power Dissipation $T_C = 25  ^{\circ}C$                                                                  |                                                   | $P_{D}$                           | 25            | W    |
| Peak Diode Recovery dV/dt <sup>c</sup>                                                                           |                                                   | dV/dt                             | 5.8           | V/ns |
| Operating Junction and Storage Temperature Range                                                                 |                                                   | T <sub>J</sub> , T <sub>stg</sub> | - 55 to + 150 | - °C |
| Soldering Recommendations (Peak Temperature) <sup>d</sup> for 10 s                                               |                                                   |                                   | 300           | 1    |

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14).
- b.  $V_{DD} = -25$  V, starting  $T_J = 25$  °C, L = 9.7 mH,  $R_g = 25$   $\Omega$ , peak  $I_L = -5.3$  A. c.  $I_{SD} \le -5.3$  A,  $dI/dt \le -80$  A/µs,  $V_{DD} \le 40$  V,  $T_J \le 150$  °C, suggested  $R_g = 24$   $\Omega$ .
- d. 0.063" (1.6 mm) from case.



# IRFR9010, IRFU9010, SiHFR9010, SiHFU9010

Vishay Siliconix

| THERMAL RESISTANCE RATINGS        |                   |      |      |      |      |
|-----------------------------------|-------------------|------|------|------|------|
| PARAMETER                         | SYMBOL            | MIN. | TYP. | MAX. | UNIT |
| Maximum Junction-to-Ambient       | R <sub>thJA</sub> | -    | -    | 110  |      |
| Case-to-Sink                      | R <sub>thCS</sub> | -    | 1.7  | -    | °C/W |
| Maximum Junction-to-Case (Drain)a | R <sub>thJC</sub> | -    | -    | 5.0  |      |

#### Note

a. Mounting pad must cover heatsink surface area.

| PARAMETER                                     | SYMBOL              | TEST CONDITIONS                                                                     |                                                                                                                | MIN.      | TYP.      | MAX.                 | UNIT             |
|-----------------------------------------------|---------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|-----------|----------------------|------------------|
| Static                                        |                     |                                                                                     |                                                                                                                |           |           |                      |                  |
| Drain-Source Breakdown Voltage                | V <sub>DS</sub>     | V <sub>G</sub>                                                                      | <sub>S</sub> = 0 V, I <sub>D</sub> = - 250 μA                                                                  | - 50      | -         | -                    | V                |
| Gate-Source Threshold Voltage                 | V <sub>GS(th)</sub> | V <sub>DS</sub>                                                                     | <sub>S</sub> = V <sub>GS</sub> , I <sub>D</sub> = - 250 μA                                                     | - 2.0     | -         | - 4.0                | V                |
| Gate-Source Leakage                           | I <sub>GSS</sub>    |                                                                                     | $V_{GS} = \pm 20 \text{ V}$                                                                                    | -         | -         | ± 500                | nA               |
| Zone Code Welfere Duein Comment               |                     | V <sub>DS</sub> =                                                                   | max. rating, V <sub>GS</sub> = 0 V                                                                             | -         | -         | - 250                | μA               |
| Zero Gate Voltage Drain Current               | I <sub>DSS</sub>    | $V_{DS} = 0.8 \text{ x m}$                                                          | ax. rating, V <sub>GS</sub> = 0 V, T <sub>J</sub> = 125 °C                                                     | -         | -         | - 1000               |                  |
| Drain-Source On-State Resistance              | R <sub>DS(on)</sub> | V <sub>GS</sub> = - 10 V                                                            | I <sub>D</sub> = - 2.8 A <sup>b</sup>                                                                          | -         | 0.35      | 0.5                  | Ω                |
| Forward Transconductance                      | 9fs                 | V <sub>DS</sub>                                                                     | ≤ - 50 V, I <sub>DS</sub> = - 2.8 A                                                                            | 1.1       | 1.7       | _                    | S                |
| Dynamic                                       |                     |                                                                                     |                                                                                                                |           |           |                      |                  |
| Input Capacitance                             | C <sub>iss</sub>    |                                                                                     | $V_{GS} = 0 V$                                                                                                 | -         | 240       | -                    | pF               |
| Output Capacitance                            | C <sub>oss</sub>    |                                                                                     | $V_{DS} = -25 V$ ,                                                                                             | -         | 160       | -                    |                  |
| Reverse Transfer Capacitance                  | C <sub>rss</sub>    | f =                                                                                 | = 1.0 MHz, see fig. 9                                                                                          | -         | 30        | -                    |                  |
| Total Gate Charge                             | Qg                  |                                                                                     | $V_{GS}$ = -10 V $I_D$ = -4.7 A, $V_{DS}$ = 0.8 x max. rating, see fig. 16 (Independent operating temperature) | -         | 6.1       | 9.1                  | nC               |
| Gate-Source Charge                            | Q <sub>gs</sub>     | $V_{GS} = -10 \text{ V}$                                                            |                                                                                                                | -         | 2.0       | 3.0                  |                  |
| Gate-Drain Charge                             | $Q_{gd}$            |                                                                                     |                                                                                                                | -         | 3.9       | 5.9                  |                  |
| Turn-On Delay Time                            | t <sub>d(on)</sub>  |                                                                                     |                                                                                                                |           | 6.1       | 9.2                  | - ns             |
| Rise Time                                     | t <sub>r</sub>      | $V_{DD} = -25 \text{ V}, I_D = -4.7 \text{ A},$                                     |                                                                                                                | -         | 47        | 71                   |                  |
| Turn-Off Delay Time                           | t <sub>d(off)</sub> |                                                                                     | $R_g$ = 24 $\Omega$ , $R_D$ = 5.6 $\Omega$ , see fig. 15 (Independent operating temperature)                   |           | 13        | 20                   |                  |
| Fall Time                                     | t <sub>f</sub>      |                                                                                     |                                                                                                                |           | 35        | 59                   |                  |
| Internal Drain Inductance                     | $L_{D}$             | 6 mm (0.25                                                                          | Between lead,<br>6 mm (0.25") from<br>package and center of<br>die contact.                                    |           | 4.5       | -                    | nH               |
| Internal Source Inductance                    | L <sub>S</sub>      |                                                                                     |                                                                                                                |           | 7.5       | -                    | 11111            |
| <b>Drain-Source Body Diode Characteristic</b> | s                   |                                                                                     |                                                                                                                |           |           |                      |                  |
| Continuous Source-Drain Diode Current         | I <sub>S</sub>      | MOSFET symbol showing the integral reverse p - n junction diode                     |                                                                                                                | -         | -         | - 5.3                | A                |
| Pulsed Diode Forward Current <sup>a</sup>     | I <sub>SM</sub>     |                                                                                     |                                                                                                                | -         | -         | - 18                 |                  |
| Body Diode Voltage                            | $V_{SD}$            | T <sub>J</sub> = 25 °C, I <sub>S</sub> = -5.3 A, V <sub>GS</sub> = 0 V <sup>b</sup> |                                                                                                                | ı         | -         | - 5.5                | V                |
| Body Diode Reverse Recovery Time              | t <sub>rr</sub>     | - T <sub>J</sub> = 25 °C, I <sub>F</sub> = -4,7 A, dl/dt = 100 A/μs <sup>b</sup>    |                                                                                                                | 33        | 75        | 160                  | ns               |
| Body Diode Reverse Recovery Charge            | $Q_{rr}$            |                                                                                     |                                                                                                                | 0.090     | 0.22      | 0.52                 | μC               |
| Forward Turn-On Time                          | t <sub>on</sub>     | Intrinsic                                                                           | turn-on time is negligible (turn-                                                                              | on is don | ninated b | y L <sub>S</sub> and | L <sub>D</sub> ) |

#### Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 14).
- b. Pulse width  $\leq 300~\mu s;$  duty cycle  $\leq 2~\%.$

www.vishay.com

Vishay Siliconix

## TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

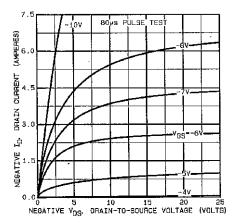



Fig. 1 - Typical Output Characteristics

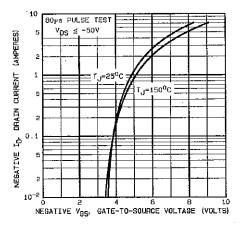



Fig. 2 - Typical Transfer Characteristics

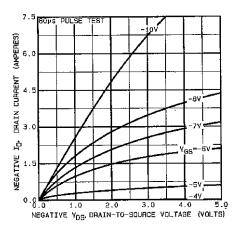



Fig. 3 - Typical Saturation Characteristics

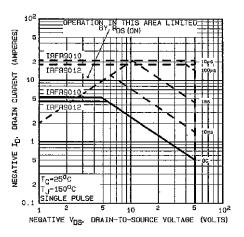



Fig. 4 - Maximum Safe Operating Area

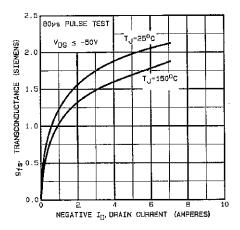



Fig. 5 - Typical Transconductance vs. Drain Current

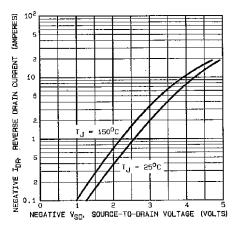



Fig. 6 - Typical Source-Drain Diode Forward Voltage

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000




Fig. 7 - Breakdown Voltage vs. Temperature



Fig. 8 - Normalized On-Resistance vs. Temperature

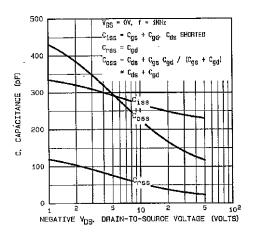



Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

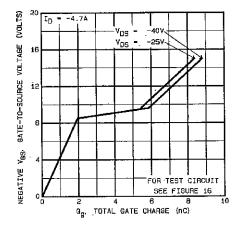



Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage

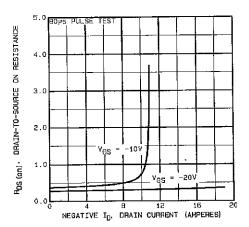



Fig. 11 - Typical On-Resistance vs. Drain Current

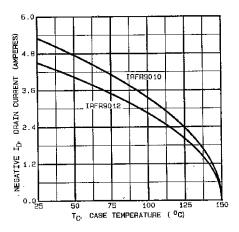



Fig. 12 - Maximum Drain Current vs. Case Temperature

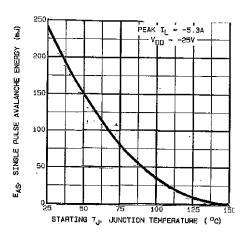



Fig. 13a - Maximum Avalanche vs. Starting Junction Temperature

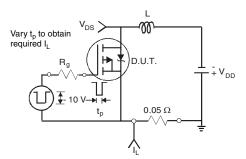



Fig. 13b - Unclamped Inductive Test Circuit

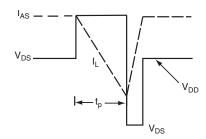



Fig. 13c - Unclamped Inductive Waveforms

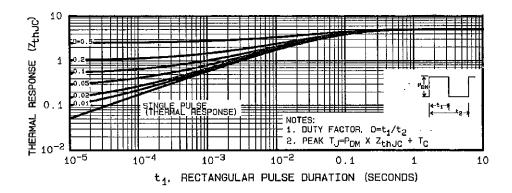



Fig. 14 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

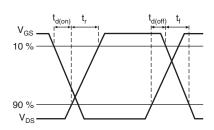



Fig. 15a - Switching Time Waveforms

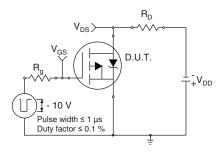



Fig. 15b - Switching Time Test Circuit

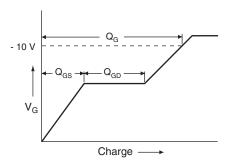



Fig. 16a - Basic Gate Charge Waveform

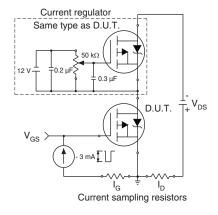
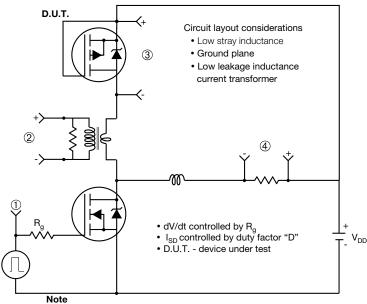
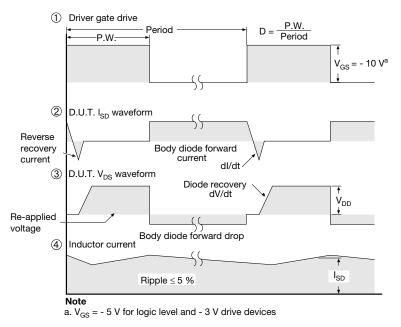



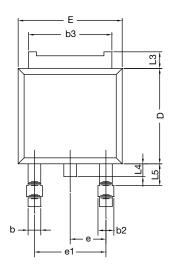

Fig. 16b - Gate Charge Test Circuit

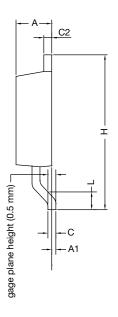
#### Peak Diode Recovery dV/dt Test Circuit

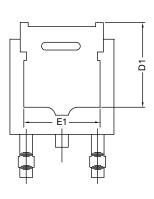


• Compliment N-Channel of D.U.T. for driver





Fig. 17 - For P-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?91378">www.vishay.com/ppg?91378</a>.



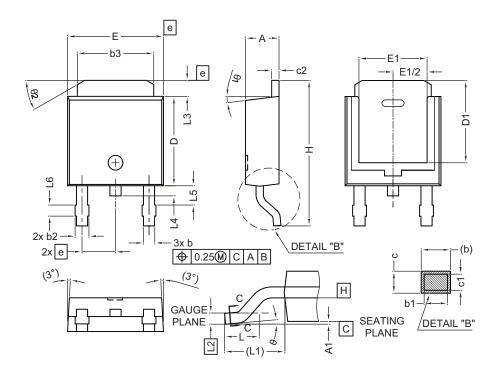

TO-252AA Case Outline

## **VERSION 1: FACILITY CODE = Y**








|      | MILLIMETERS |       |  |
|------|-------------|-------|--|
| DIM. | MIN.        | MAX.  |  |
| A    | 2.18        | 2.38  |  |
| A1   | -           | 0.127 |  |
| b    | 0.64        | 0.88  |  |
| b2   | 0.76        | 1.14  |  |
| b3   | 4.95        | 5.46  |  |
| С    | 0.46        | 0.61  |  |
| C2   | 0.46        | 0.89  |  |
| D    | 5.97        | 6.22  |  |
| D1   | 4.10        | -     |  |
| Е    | 6.35        | 6.73  |  |
| E1   | 4.32        | -     |  |
| Н    | 9.40        | 10.41 |  |
| е    | 2.28 BSC    |       |  |
| e1   | 4.56 BSC    |       |  |
| L    | 1.40        | 1.78  |  |
| L3   | 0.89        | 1.27  |  |
| L4   | -           | 1.02  |  |
| L5   | 1.01        | 1.52  |  |

#### Note

• Dimension L3 is for reference only



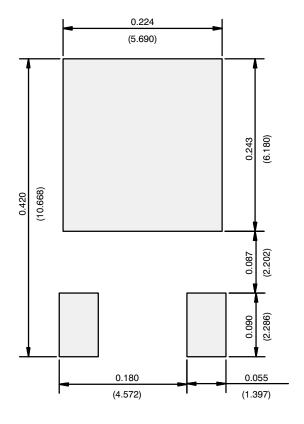
### **VERSION 2: FACILITY CODE = N**



|      | MILLIMETERS |       |  |
|------|-------------|-------|--|
| DIM. | MIN.        | MAX.  |  |
| Α    | 2.18        | 2.39  |  |
| A1   | -           | 0.13  |  |
| b    | 0.65        | 0.89  |  |
| b1   | 0.64        | 0.79  |  |
| b2   | 0.76        | 1.13  |  |
| b3   | 4.95        | 5.46  |  |
| С    | 0.46        | 0.61  |  |
| c1   | 0.41        | 0.56  |  |
| c2   | 0.46        | 0.60  |  |
| D    | 5.97        | 6.22  |  |
| D1   | 5.21        | =     |  |
| E    | 6.35 6.73   |       |  |
| E1   | 4.32 -      |       |  |
| е    | 2.29 BSC    |       |  |
| Н    | 9.94        | 10.34 |  |

|      | MILLIMETERS |        |  |
|------|-------------|--------|--|
| DIM. | MIN.        | MAX.   |  |
| L    | 1.50        | 1.78   |  |
| L1   | 2.74        | ł ref. |  |
| L2   | 0.51        | BSC    |  |
| L3   | 0.89        | 1.27   |  |
| L4   | -           | 1.02   |  |
| L5   | 1.14        | 1.49   |  |
| L6   | 0.65        | 0.85   |  |
| θ    | 0°          | 10°    |  |
| θ1   | 0°          | 15°    |  |
| θ2   | 25°         | 35°    |  |

### Notes


- Dimensioning and tolerance confirm to ASME Y14.5M-1994
- All dimensions are in millimeters. Angles are in degrees
- Heat sink side flash is max. 0.8 mm
- Radius on terminal is optional

ECN: E19-0649-Rev. Q, 16-Dec-2019

DWG: 5347



# **RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)**



Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE



# **Legal Disclaimer Notice**

Vishay

# **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.