MOSFET – Power, Single, P-Channel, μ8FL -30 V, 7.5 mΩ

Features

- Ultra Low R_{DS(on)} to Improve System Efficiency
- Advanced Package Technology in 3.3x3.3mm for Space Saving and Excellent Thermal Conduction
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Load Switch
- Protection: Reverse Current, Over Voltage, and Reverse Negative Voltage
- Battery Management

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

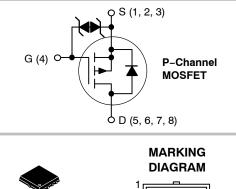
Parameter			Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	-30	V		
Gate-to-Source Voltage	V _{GS}	±25	V				
Continuous Drain Cur-		$T_C = 25^{\circ}C$	Ι _D	-47.6	А		
rent $R_{\theta JC}$ (Notes 1, 2)	Steady	$T_C = 85^{\circ}C$		-34.4			
Power Dissipation $R_{\theta JC}$ (Notes 1, 2)	State	$T_C = 25^{\circ}C$	PD	33.8	W		
Continuous Drain Cur-		$T_A = 25^{\circ}C$	۱ _D	-13.4	А		
rent $R_{\theta JA}$ (Notes 1, 2)	Steady	$T_A = 85^{\circ}C$		-9.6			
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	State	$T_A = 25^{\circ}C$	P _D	2.66	W		
Pulsed Drain Current $T_A = 25^{\circ}C, t_p = 10 \ \mu s$			I _{DM}	-195	А		
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to 150	°C		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain) (Note 2)	$R_{\theta JC}$	3.7	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	47	°C/W

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


2. Surface-mounted on FR4 board using a 1 in², 2 oz. Cu pad. Assuming a 76mm x 76mm x 1.6mm board.



ON Semiconductor®

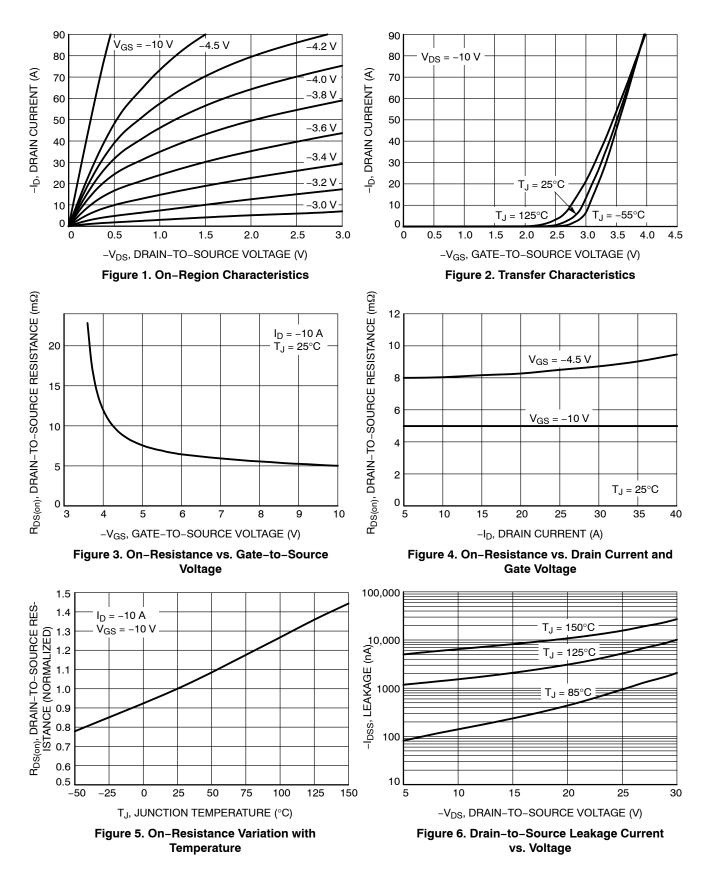
www.onsemi.com

V _{(BR)DSS}	R _{DS(on)}	I _D
-30 V	7.5 m Ω @ –10 V	-47.6 A
-30 v	12 mΩ @ –4.5 V	-47.0 A

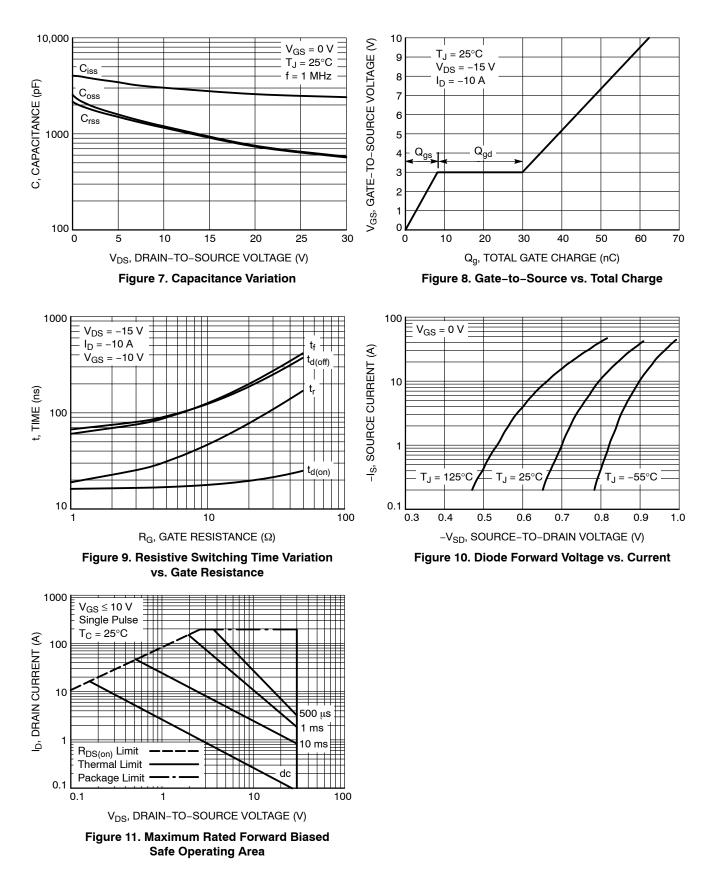
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS015P03P8ZTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NTTFS015P03P8ZTWG	WDFN8 (Pb-Free)	3000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A		-30			V
Drain-to-Source Breakdown Volt- age Temperature Coefficient	V _{(BR)DSS} / T _J	I_D = –250 $\mu A,$ ref to 25°C			-4.4		mV/° C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±25 V			±10	μA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= –250 μA	-1.0		-3.0	V
Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = –250 μA, r	ef to 25°C		5.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I _I	_D = -12 A		5.0	7.5	mΩ
		V _{GS} = -4.5 V, I	_D = -10 A		8.0	12	
Froward Transconductance	9 _{FS}	$V_{DS} = -5 V, I_{D}$, = −10 A		77		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -15 V			2706		pF
Output Capacitance	C _{oss}				907		1
Reverse Transfer Capacitance	C _{rss}			875		1	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -10 \text{ A}$			37		nC
Threshold Gate Charge	Q _{G(TH)}				5.1		
Gate-to-Source Charge	Q _{GS}				8.2		
Gate-to-Drain Charge	Q _{GD}				21.7		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -10 V, V_{DS} = -15 V, I _D = -10 A			62.3	105	
SWITCHING CHARACTERISTICS, V	GS = 4.5 V (Note 3	3)					
Turn-On Delay Time	t _{d(on)}				25		ns
Rise Time	t _r	$V_{CC} = -4.5 V_{c} V_{r}$	$h_{0} = -15 V_{0}$		138		
Turn-Off Delay Time	t _{d(off)}	V _{GS} = -4.5 V, V _E I _D = -10 A, R	$_{\rm G} = 6 \Omega$		55		1
Fall Time	t _f				98		
SWITCHING CHARACTERISTICS, V	GS = 10 V (Note 3	3)					
Turn-On Delay Time	t _{d(on)}				17		ns
Rise Time	t _r	VGS = -10 V. VD	s = -15 V.		34		
Turn-Off Delay Time	t _{d(off)}	V_{GS} = -10 V, V_{DS} = -15 V, I _D = -10 A, R _G = 6 Ω			99		
Fall Time	t _f				97		1
DRAIN-SOURCE DIODE CHARACTI	ERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		-0.8	-1.3	V
		I _S = -10 A	T _J = 125°C		-0.65		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dl _s /dt = 100 A/μs, I _s = -10 A			40.7		ns
Charge Time	ta				18.4		1
Discharge Time	t _b				22.3		1
Reverse Recovery Charge	Q _{RR}				29		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

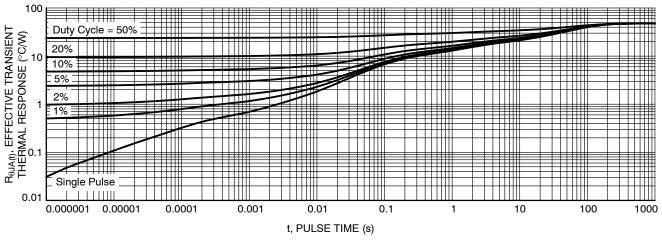
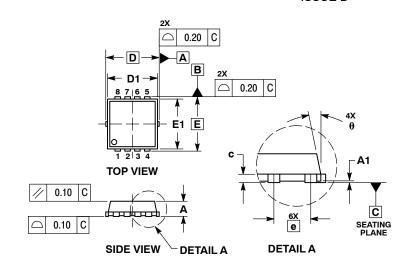
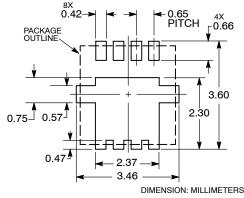



Figure 12. Thermal Response

PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB **ISSUE D**


NOTES

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS.

3. DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH RS

	MI	LLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	;	3.30 BSC		0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC			0.026 BS	С	
G	0.30	0.41	0.51	0.012	0.016	0.020	
к	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
М	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	

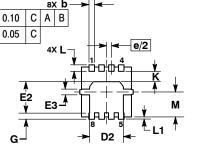
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:


Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

BOTTOM VIEW

 \oplus